Metamath Proof Explorer


Theorem aspss

Description: Span preserves subset ordering. ( spanss analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A=AlgSpanW
aspval.v V=BaseW
Assertion aspss WAssAlgSVTSATAS

Proof

Step Hyp Ref Expression
1 aspval.a A=AlgSpanW
2 aspval.v V=BaseW
3 simpl3 WAssAlgSVTStSubRingWLSubSpWTS
4 sstr2 TSStTt
5 3 4 syl WAssAlgSVTStSubRingWLSubSpWStTt
6 5 ss2rabdv WAssAlgSVTStSubRingWLSubSpW|SttSubRingWLSubSpW|Tt
7 intss tSubRingWLSubSpW|SttSubRingWLSubSpW|TttSubRingWLSubSpW|TttSubRingWLSubSpW|St
8 6 7 syl WAssAlgSVTStSubRingWLSubSpW|TttSubRingWLSubSpW|St
9 simp1 WAssAlgSVTSWAssAlg
10 simp3 WAssAlgSVTSTS
11 simp2 WAssAlgSVTSSV
12 10 11 sstrd WAssAlgSVTSTV
13 eqid LSubSpW=LSubSpW
14 1 2 13 aspval WAssAlgTVAT=tSubRingWLSubSpW|Tt
15 9 12 14 syl2anc WAssAlgSVTSAT=tSubRingWLSubSpW|Tt
16 1 2 13 aspval WAssAlgSVAS=tSubRingWLSubSpW|St
17 16 3adant3 WAssAlgSVTSAS=tSubRingWLSubSpW|St
18 8 15 17 3sstr4d WAssAlgSVTSATAS