Metamath Proof Explorer


Theorem aspssid

Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A=AlgSpanW
aspval.v V=BaseW
Assertion aspssid WAssAlgSVSAS

Proof

Step Hyp Ref Expression
1 aspval.a A=AlgSpanW
2 aspval.v V=BaseW
3 ssintub StSubRingWLSubSpW|St
4 eqid LSubSpW=LSubSpW
5 1 2 4 aspval WAssAlgSVAS=tSubRingWLSubSpW|St
6 3 5 sseqtrrid WAssAlgSVSAS