| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplbas2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplbas2.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 3 |
|
mplbas2.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 4 |
|
mplbas2.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑆 ) |
| 5 |
|
mplbas2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mplbas2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 7 |
2 5 6
|
psrassa |
⊢ ( 𝜑 → 𝑆 ∈ AssAlg ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 10 |
1 2 8 9
|
mplbasss |
⊢ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 12 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 |
2 3 9 5 13
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑆 ) ) |
| 15 |
14
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 17 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 19 |
1 3 8 16 17 18
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
| 20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
| 21 |
|
ffnfv |
⊢ ( 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 22 |
15 20 21
|
sylanbrc |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
| 23 |
22
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
| 24 |
4 9
|
aspss |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ∧ ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
| 25 |
7 11 23 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
| 26 |
2 1 8 5 13
|
mplsubrg |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 27 |
2 1 8 5 13
|
mpllss |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) |
| 29 |
4 9 28
|
aspid |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
| 30 |
7 26 27 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
| 31 |
25 30
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
| 32 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 33 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 34 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 35 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝐼 ∈ 𝑊 ) |
| 36 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 37 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
| 39 |
1 32 33 34 35 8 36 37 38
|
mplcoe1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ) |
| 40 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 41 |
1 5 13
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 42 |
|
ringabl |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Abel ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Abel ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑃 ∈ Abel ) |
| 45 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 46 |
45
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 48 |
14
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) |
| 49 |
4 9
|
aspsubrg |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 50 |
7 48 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 51 |
1 2 8
|
mplval2 |
⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ 𝑃 ) ) |
| 52 |
51
|
subsubrg |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 53 |
26 52
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 54 |
50 31 53
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
| 55 |
|
subrgsubg |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
| 56 |
54 55
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
| 58 |
1 5 13
|
mpllmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑃 ∈ LMod ) |
| 60 |
4 9 28
|
asplss |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 61 |
7 48 60
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 62 |
2 5 13
|
psrlmod |
⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
| 63 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
| 64 |
51 28 63
|
lsslss |
⊢ ( ( 𝑆 ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 65 |
62 27 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 66 |
61 31 65
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
| 68 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 69 |
1 68 8 32 38
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 70 |
69
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 71 |
1 35 37
|
mplsca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 73 |
72
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 74 |
70 73
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 75 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑊 ) |
| 76 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 77 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 78 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
| 79 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 80 |
1 32 33 34 75 76 77 3 78 79
|
mplcoe2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ) |
| 81 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 82 |
76 81
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 83 |
1
|
mplcrng |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ CRing ) |
| 84 |
5 6 83
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 85 |
76
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
| 86 |
84 85
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
| 87 |
86
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
| 88 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
| 89 |
76
|
subrgsubm |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
| 90 |
88 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
| 91 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → 𝜑 ) |
| 92 |
32
|
psrbag |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
| 93 |
35 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
| 94 |
93
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) |
| 95 |
94
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 96 |
95
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
| 97 |
4 9
|
aspssid |
⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
| 98 |
7 48 97
|
syl2anc |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
| 99 |
98
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
| 100 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑉 Fn 𝐼 ) |
| 101 |
|
fnfvelrn |
⊢ ( ( 𝑉 Fn 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) |
| 102 |
100 101
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) |
| 103 |
99 102
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 104 |
76 8
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 105 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 106 |
76 105
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 107 |
105
|
subrgmcl |
⊢ ( ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 108 |
54 107
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 109 |
81
|
subrg1cl |
⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 110 |
54 109
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 111 |
104 77 106 86 31 108 82 110
|
mulgnn0subcl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 112 |
91 96 103 111
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 113 |
112
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) : 𝐼 ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
| 114 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
| 115 |
114
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
| 116 |
|
funmpt |
⊢ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) |
| 117 |
116
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) |
| 118 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 1r ‘ 𝑃 ) ∈ V ) |
| 119 |
94
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ◡ 𝑘 “ ℕ ) ∈ Fin ) |
| 120 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 121 |
|
elmapi |
⊢ ( 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 122 |
121
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 123 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑊 ) |
| 124 |
|
fcdmnn0supp |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) |
| 125 |
123 122 124
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) |
| 126 |
|
eqimss |
⊢ ( ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
| 127 |
125 126
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
| 128 |
|
c0ex |
⊢ 0 ∈ V |
| 129 |
128
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 0 ∈ V ) |
| 130 |
122 127 123 129
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
| 131 |
120 130
|
sylanl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
| 132 |
131
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) |
| 133 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝐼 ∈ 𝑊 ) |
| 134 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑅 ∈ Ring ) |
| 135 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) → 𝑧 ∈ 𝐼 ) |
| 136 |
135
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑧 ∈ 𝐼 ) |
| 137 |
1 3 8 133 134 136
|
mvrcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) ) |
| 138 |
104 82 77
|
mulg0 |
⊢ ( ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
| 139 |
137 138
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
| 140 |
132 139
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
| 141 |
140 75
|
suppss2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
| 142 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ∧ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∧ ( 1r ‘ 𝑃 ) ∈ V ) ∧ ( ( ◡ 𝑘 “ ℕ ) ∈ Fin ∧ ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
| 143 |
115 117 118 119 141 142
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
| 144 |
82 87 75 90 113 143
|
gsumsubmcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 145 |
80 144
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 146 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 147 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 148 |
146 36 147 63
|
lssvscl |
⊢ ( ( ( 𝑃 ∈ LMod ∧ ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 149 |
59 67 74 145 148
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 150 |
149
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
| 151 |
45
|
mptrabex |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V |
| 152 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 153 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
| 154 |
151 152 153
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
| 155 |
154
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
| 156 |
1 2 9 33 8
|
mplelbas |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 finSupp ( 0g ‘ 𝑅 ) ) ) |
| 157 |
156
|
simprbi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
| 158 |
157
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
| 159 |
158
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
| 160 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) |
| 161 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 162 |
69 160 47 161
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 163 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 164 |
163
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 165 |
162 164
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 166 |
165
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 167 |
|
eldifi |
⊢ ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 168 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
| 169 |
1 8 33 34 32 75 168 79
|
mplmon |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 170 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
| 171 |
8 146 36 170 40
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 172 |
59 169 171
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 173 |
167 172
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 174 |
166 173
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 175 |
174 47
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) |
| 176 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 177 |
155 159 175 176
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 178 |
40 44 47 57 150 177
|
gsumsubgcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 179 |
39 178
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 180 |
31 179
|
eqelssd |
⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) ) |