Step |
Hyp |
Ref |
Expression |
1 |
|
ltbval.c |
⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) |
2 |
|
ltbval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
3 |
|
ltbval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
ltbval.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) |
5 |
|
elex |
⊢ ( 𝑇 ∈ 𝑊 → 𝑇 ∈ V ) |
6 |
|
elex |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) |
7 |
|
simpr |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
9 |
|
rabeq |
⊢ ( ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
11 |
10 2
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
12 |
11
|
sseq2d |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) ) |
13 |
|
simpl |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → 𝑟 = 𝑇 ) |
14 |
13
|
breqd |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( 𝑧 𝑟 𝑤 ↔ 𝑧 𝑇 𝑤 ) ) |
15 |
14
|
imbi1d |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
16 |
7 15
|
raleqbidv |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
17 |
16
|
anbi2d |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
18 |
7 17
|
rexeqbidv |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
19 |
12 18
|
anbi12d |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) ) |
20 |
19
|
opabbidv |
⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
21 |
|
df-ltbag |
⊢ <bag = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
22 |
|
vex |
⊢ 𝑥 ∈ V |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
22 23
|
prss |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
25 |
24
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
26 |
25
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } |
27 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
28 |
2 27
|
rabex2 |
⊢ 𝐷 ∈ V |
29 |
28 28
|
xpex |
⊢ ( 𝐷 × 𝐷 ) ∈ V |
30 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ⊆ ( 𝐷 × 𝐷 ) |
31 |
29 30
|
ssexi |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ∈ V |
32 |
26 31
|
eqeltrri |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ∈ V |
33 |
20 21 32
|
ovmpoa |
⊢ ( ( 𝑇 ∈ V ∧ 𝐼 ∈ V ) → ( 𝑇 <bag 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
34 |
5 6 33
|
syl2an |
⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉 ) → ( 𝑇 <bag 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
35 |
4 3 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 <bag 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
36 |
1 35
|
syl5eq |
⊢ ( 𝜑 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |