| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplcoe1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplcoe1.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 3 |
|
mplcoe1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplcoe1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
mplcoe1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mplcoe1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 7 |
|
mplcoe1.n |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 8 |
|
mplcoe1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
|
mplcoe1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
1 10 6 2 9
|
mplelf |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 12 |
11
|
feqmptd |
⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
| 13 |
|
iftrue |
⊢ ( 𝑦 ∈ ( 𝑋 supp 0 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 15 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) |
| 16 |
|
ssidd |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ ( 𝑋 supp 0 ) ) |
| 17 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 18 |
2 17
|
rabex2 |
⊢ 𝐷 ∈ V |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 20 |
3
|
fvexi |
⊢ 0 ∈ V |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 22 |
11 16 19 21
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑦 ) = 0 ) |
| 23 |
22
|
ifeq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 24 |
|
ifid |
⊢ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) |
| 25 |
23 24
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 26 |
15 25
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 27 |
26
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 28 |
14 27
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
| 30 |
12 29
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 31 |
|
suppssdm |
⊢ ( 𝑋 supp 0 ) ⊆ dom 𝑋 |
| 32 |
31 11
|
fssdm |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ 𝐷 ) |
| 33 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 34 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 35 |
1 33 34 3 6
|
mplelbas |
⊢ ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑋 finSupp 0 ) ) |
| 36 |
35
|
simprbi |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 finSupp 0 ) |
| 37 |
9 36
|
syl |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
| 38 |
37
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ∈ Fin ) |
| 39 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐷 ↔ ∅ ⊆ 𝐷 ) ) |
| 40 |
|
mpteq1 |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
| 41 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ |
| 42 |
40 41
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ∅ ) ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 45 |
44
|
gsum0 |
⊢ ( 𝑃 Σg ∅ ) = ( 0g ‘ 𝑃 ) |
| 46 |
43 45
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 47 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
| 48 |
|
eleq2 |
⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ∅ ) ) |
| 49 |
47 48
|
mtbiri |
⊢ ( 𝑤 = ∅ → ¬ 𝑦 ∈ 𝑤 ) |
| 50 |
49
|
iffalsed |
⊢ ( 𝑤 = ∅ → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
| 51 |
50
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
| 52 |
46 51
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
| 53 |
39 52
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) |
| 54 |
53
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) ) |
| 55 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐷 ↔ 𝑥 ⊆ 𝐷 ) ) |
| 56 |
|
mpteq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 58 |
|
eleq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
| 59 |
58
|
ifbid |
⊢ ( 𝑤 = 𝑥 → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 60 |
59
|
mpteq2dv |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 61 |
57 60
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 62 |
55 61
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 63 |
62
|
imbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 64 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) |
| 65 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
| 66 |
65
|
oveq2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 67 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) ) |
| 68 |
67
|
ifbid |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 69 |
68
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 70 |
66 69
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 71 |
64 70
|
imbi12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 72 |
71
|
imbi2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 73 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑋 supp 0 ) ⊆ 𝐷 ) ) |
| 74 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
| 75 |
74
|
oveq2d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 76 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) |
| 77 |
76
|
ifbid |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 78 |
77
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 79 |
75 78
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 80 |
73 79
|
imbi12d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 81 |
80
|
imbi2d |
⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 82 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 83 |
8 82
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 84 |
1 2 3 44 5 83
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 0 } ) ) |
| 85 |
|
fconstmpt |
⊢ ( 𝐷 × { 0 } ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) |
| 86 |
84 85
|
eqtrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
| 87 |
86
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
| 88 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) |
| 89 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) ) |
| 90 |
88 89
|
ax-mp |
⊢ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) |
| 91 |
90
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 92 |
|
oveq1 |
⊢ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 93 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 94 |
1 5 8
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 95 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
| 96 |
94 95
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ CMnd ) |
| 98 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ∈ Fin ) |
| 99 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) |
| 100 |
99
|
unssad |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ⊆ 𝐷 ) |
| 101 |
100
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐷 ) |
| 102 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 103 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 104 |
1 102 103
|
mpllmodd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑃 ∈ LMod ) |
| 105 |
11
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 106 |
1 5 8
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 108 |
107
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 109 |
105 108
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 110 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑘 ∈ 𝐷 ) |
| 111 |
1 6 3 4 2 102 103 110
|
mplmon |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) |
| 112 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 113 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 114 |
6 112 7 113
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 115 |
104 109 111 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 116 |
115
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 117 |
101 116
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 118 |
|
vex |
⊢ 𝑧 ∈ V |
| 119 |
118
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ V ) |
| 120 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ¬ 𝑧 ∈ 𝑥 ) |
| 121 |
1 5 8
|
mpllmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ LMod ) |
| 123 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 124 |
99
|
unssbd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → { 𝑧 } ⊆ 𝐷 ) |
| 125 |
118
|
snss |
⊢ ( 𝑧 ∈ 𝐷 ↔ { 𝑧 } ⊆ 𝐷 ) |
| 126 |
124 125
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ 𝐷 ) |
| 127 |
123 126
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 128 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 129 |
128
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 130 |
127 129
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 131 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
| 132 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Ring ) |
| 133 |
1 6 3 4 2 131 132 126
|
mplmon |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) |
| 134 |
6 112 7 113
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 135 |
122 130 133 134
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 136 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 137 |
|
equequ2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑦 = 𝑘 ↔ 𝑦 = 𝑧 ) ) |
| 138 |
137
|
ifbid |
⊢ ( 𝑘 = 𝑧 → if ( 𝑦 = 𝑘 , 1 , 0 ) = if ( 𝑦 = 𝑧 , 1 , 0 ) ) |
| 139 |
138
|
mpteq2dv |
⊢ ( 𝑘 = 𝑧 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) |
| 140 |
136 139
|
oveq12d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 141 |
6 93 97 98 117 119 120 135 140
|
gsumunsn |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 142 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 143 |
123
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 144 |
10 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 145 |
8 144
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 146 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 147 |
143 146
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 148 |
147
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 149 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 150 |
149 18
|
elmap |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 151 |
148 150
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 152 |
33 10 2 34 131
|
psrbas |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 153 |
151 152
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 154 |
18
|
mptex |
⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V |
| 155 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 156 |
154 155 20
|
3pm3.2i |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) |
| 157 |
156
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ) |
| 158 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) → ¬ 𝑦 ∈ 𝑥 ) |
| 159 |
158
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
| 160 |
159
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
| 161 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐷 ∈ V ) |
| 162 |
160 161
|
suppss2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) |
| 163 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ∧ ( 𝑥 ∈ Fin ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) |
| 164 |
157 98 162 163
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) |
| 165 |
1 33 34 3 6
|
mplelbas |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) ) |
| 166 |
153 164 165
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ) |
| 167 |
1 6 142 93 166 135
|
mpladd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 168 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ V ) |
| 169 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 170 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 171 |
1 7 10 6 170 2 127 133
|
mplvsca |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 172 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 173 |
10 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 174 |
173 144
|
ifcld |
⊢ ( 𝑅 ∈ Ring → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 175 |
8 174
|
syl |
⊢ ( 𝜑 → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 176 |
175
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 177 |
|
fconstmpt |
⊢ ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) |
| 178 |
177
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 179 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) |
| 180 |
161 172 176 178 179
|
offval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 181 |
171 180
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 182 |
161 147 168 169 181
|
offval2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 183 |
132 82
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Grp ) |
| 184 |
10 142 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 185 |
183 127 184
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 186 |
185
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 187 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ { 𝑧 } ) |
| 188 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) |
| 189 |
187 188
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 = 𝑧 ) |
| 190 |
189
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 191 |
186 190
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
| 192 |
120
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ 𝑥 ) |
| 193 |
189 192
|
eqneltrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑥 ) |
| 194 |
193
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
| 195 |
189
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 1 ) |
| 196 |
195
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 197 |
10 170 4
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 198 |
132 127 197
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 199 |
198
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 200 |
196 199
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 201 |
194 200
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) ) |
| 202 |
|
elun2 |
⊢ ( 𝑦 ∈ { 𝑧 } → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
| 203 |
202
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
| 204 |
203
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 205 |
191 201 204
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 206 |
83
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Grp ) |
| 207 |
10 142 3
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 208 |
206 147 207
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 209 |
208
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 210 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ { 𝑧 } ) |
| 211 |
210 188
|
sylnib |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 = 𝑧 ) |
| 212 |
211
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 0 ) |
| 213 |
212
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) ) |
| 214 |
10 170 3
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 215 |
132 127 214
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 216 |
215
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 217 |
213 216
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = 0 ) |
| 218 |
217
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) ) |
| 219 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ) |
| 220 |
|
orcom |
⊢ ( ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) |
| 221 |
219 220
|
bitri |
⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) |
| 222 |
|
biorf |
⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) ) |
| 223 |
221 222
|
bitr4id |
⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
| 224 |
223
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
| 225 |
224
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 226 |
209 218 225
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 227 |
205 226
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 228 |
227
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 229 |
167 182 228
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 230 |
141 229
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) ) |
| 231 |
92 230
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 232 |
231
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 233 |
232
|
a2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 234 |
91 233
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 235 |
234
|
expcom |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝜑 → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 236 |
235
|
a2d |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 237 |
54 63 72 81 87 236
|
findcard2s |
⊢ ( ( 𝑋 supp 0 ) ∈ Fin → ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 238 |
38 237
|
mpcom |
⊢ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 239 |
32 238
|
mpd |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 240 |
30 239
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 241 |
32
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
| 242 |
241
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 243 |
115
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) : 𝐷 ⟶ 𝐵 ) |
| 244 |
11 16 19 21
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑘 ) = 0 ) |
| 245 |
244
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
| 246 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) → 𝑘 ∈ 𝐷 ) |
| 247 |
107
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 248 |
3 247
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 249 |
248
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
| 250 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
| 251 |
6 112 7 250 44
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 252 |
104 111 251
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 253 |
249 252
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 254 |
246 253
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 255 |
245 254
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 256 |
255 19
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) |
| 257 |
18
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V |
| 258 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
| 259 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
| 260 |
257 258 259
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
| 261 |
260
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
| 262 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑋 supp 0 ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 263 |
261 38 256 262
|
syl12anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 264 |
6 44 96 19 243 256 263
|
gsumres |
⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 265 |
242 264
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 266 |
240 265
|
eqtrd |
⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |