Metamath Proof Explorer


Theorem mplbas2

Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mplbas2.p P = I mPoly R
mplbas2.s S = I mPwSer R
mplbas2.v V = I mVar R
mplbas2.a A = AlgSpan S
mplbas2.i φ I W
mplbas2.r φ R CRing
Assertion mplbas2 φ A ran V = Base P

Proof

Step Hyp Ref Expression
1 mplbas2.p P = I mPoly R
2 mplbas2.s S = I mPwSer R
3 mplbas2.v V = I mVar R
4 mplbas2.a A = AlgSpan S
5 mplbas2.i φ I W
6 mplbas2.r φ R CRing
7 2 5 6 psrassa φ S AssAlg
8 eqid Base P = Base P
9 eqid Base S = Base S
10 1 2 8 9 mplbasss Base P Base S
11 10 a1i φ Base P Base S
12 crngring R CRing R Ring
13 6 12 syl φ R Ring
14 2 3 9 5 13 mvrf φ V : I Base S
15 14 ffnd φ V Fn I
16 5 adantr φ x I I W
17 13 adantr φ x I R Ring
18 simpr φ x I x I
19 1 3 8 16 17 18 mvrcl φ x I V x Base P
20 19 ralrimiva φ x I V x Base P
21 ffnfv V : I Base P V Fn I x I V x Base P
22 15 20 21 sylanbrc φ V : I Base P
23 22 frnd φ ran V Base P
24 4 9 aspss S AssAlg Base P Base S ran V Base P A ran V A Base P
25 7 11 23 24 syl3anc φ A ran V A Base P
26 2 1 8 5 13 mplsubrg φ Base P SubRing S
27 2 1 8 5 13 mpllss φ Base P LSubSp S
28 eqid LSubSp S = LSubSp S
29 4 9 28 aspid S AssAlg Base P SubRing S Base P LSubSp S A Base P = Base P
30 7 26 27 29 syl3anc φ A Base P = Base P
31 25 30 sseqtrd φ A ran V Base P
32 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
33 eqid 0 R = 0 R
34 eqid 1 R = 1 R
35 5 adantr φ x Base P I W
36 eqid P = P
37 13 adantr φ x Base P R Ring
38 simpr φ x Base P x Base P
39 1 32 33 34 35 8 36 37 38 mplcoe1 φ x Base P x = P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
40 eqid 0 P = 0 P
41 1 mplring I W R Ring P Ring
42 5 13 41 syl2anc φ P Ring
43 ringabl P Ring P Abel
44 42 43 syl φ P Abel
45 44 adantr φ x Base P P Abel
46 ovex 0 I V
47 46 rabex f 0 I | f -1 Fin V
48 47 a1i φ x Base P f 0 I | f -1 Fin V
49 14 frnd φ ran V Base S
50 4 9 aspsubrg S AssAlg ran V Base S A ran V SubRing S
51 7 49 50 syl2anc φ A ran V SubRing S
52 1 2 8 mplval2 P = S 𝑠 Base P
53 52 subsubrg Base P SubRing S A ran V SubRing P A ran V SubRing S A ran V Base P
54 26 53 syl φ A ran V SubRing P A ran V SubRing S A ran V Base P
55 51 31 54 mpbir2and φ A ran V SubRing P
56 subrgsubg A ran V SubRing P A ran V SubGrp P
57 55 56 syl φ A ran V SubGrp P
58 57 adantr φ x Base P A ran V SubGrp P
59 1 mpllmod I W R Ring P LMod
60 5 13 59 syl2anc φ P LMod
61 60 ad2antrr φ x Base P k f 0 I | f -1 Fin P LMod
62 4 9 28 asplss S AssAlg ran V Base S A ran V LSubSp S
63 7 49 62 syl2anc φ A ran V LSubSp S
64 2 5 13 psrlmod φ S LMod
65 eqid LSubSp P = LSubSp P
66 52 28 65 lsslss S LMod Base P LSubSp S A ran V LSubSp P A ran V LSubSp S A ran V Base P
67 64 27 66 syl2anc φ A ran V LSubSp P A ran V LSubSp S A ran V Base P
68 63 31 67 mpbir2and φ A ran V LSubSp P
69 68 ad2antrr φ x Base P k f 0 I | f -1 Fin A ran V LSubSp P
70 eqid Base R = Base R
71 1 70 8 32 38 mplelf φ x Base P x : f 0 I | f -1 Fin Base R
72 71 ffvelrnda φ x Base P k f 0 I | f -1 Fin x k Base R
73 1 35 37 mplsca φ x Base P R = Scalar P
74 73 adantr φ x Base P k f 0 I | f -1 Fin R = Scalar P
75 74 fveq2d φ x Base P k f 0 I | f -1 Fin Base R = Base Scalar P
76 72 75 eleqtrd φ x Base P k f 0 I | f -1 Fin x k Base Scalar P
77 5 ad2antrr φ x Base P k f 0 I | f -1 Fin I W
78 eqid mulGrp P = mulGrp P
79 eqid mulGrp P = mulGrp P
80 6 ad2antrr φ x Base P k f 0 I | f -1 Fin R CRing
81 simpr φ x Base P k f 0 I | f -1 Fin k f 0 I | f -1 Fin
82 1 32 33 34 77 78 79 3 80 81 mplcoe2 φ x Base P k f 0 I | f -1 Fin y f 0 I | f -1 Fin if y = k 1 R 0 R = mulGrp P z I k z mulGrp P V z
83 eqid 1 P = 1 P
84 78 83 ringidval 1 P = 0 mulGrp P
85 1 mplcrng I W R CRing P CRing
86 5 6 85 syl2anc φ P CRing
87 78 crngmgp P CRing mulGrp P CMnd
88 86 87 syl φ mulGrp P CMnd
89 88 ad2antrr φ x Base P k f 0 I | f -1 Fin mulGrp P CMnd
90 55 ad2antrr φ x Base P k f 0 I | f -1 Fin A ran V SubRing P
91 78 subrgsubm A ran V SubRing P A ran V SubMnd mulGrp P
92 90 91 syl φ x Base P k f 0 I | f -1 Fin A ran V SubMnd mulGrp P
93 simplll φ x Base P k f 0 I | f -1 Fin z I φ
94 32 psrbag I W k f 0 I | f -1 Fin k : I 0 k -1 Fin
95 35 94 syl φ x Base P k f 0 I | f -1 Fin k : I 0 k -1 Fin
96 95 biimpa φ x Base P k f 0 I | f -1 Fin k : I 0 k -1 Fin
97 96 simpld φ x Base P k f 0 I | f -1 Fin k : I 0
98 97 ffvelrnda φ x Base P k f 0 I | f -1 Fin z I k z 0
99 4 9 aspssid S AssAlg ran V Base S ran V A ran V
100 7 49 99 syl2anc φ ran V A ran V
101 100 ad3antrrr φ x Base P k f 0 I | f -1 Fin z I ran V A ran V
102 15 ad2antrr φ x Base P k f 0 I | f -1 Fin V Fn I
103 fnfvelrn V Fn I z I V z ran V
104 102 103 sylan φ x Base P k f 0 I | f -1 Fin z I V z ran V
105 101 104 sseldd φ x Base P k f 0 I | f -1 Fin z I V z A ran V
106 78 8 mgpbas Base P = Base mulGrp P
107 eqid P = P
108 78 107 mgpplusg P = + mulGrp P
109 107 subrgmcl A ran V SubRing P u A ran V v A ran V u P v A ran V
110 55 109 syl3an1 φ u A ran V v A ran V u P v A ran V
111 83 subrg1cl A ran V SubRing P 1 P A ran V
112 55 111 syl φ 1 P A ran V
113 106 79 108 88 31 110 84 112 mulgnn0subcl φ k z 0 V z A ran V k z mulGrp P V z A ran V
114 93 98 105 113 syl3anc φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z A ran V
115 114 fmpttd φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z : I A ran V
116 5 mptexd φ z I k z mulGrp P V z V
117 116 ad2antrr φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z V
118 funmpt Fun z I k z mulGrp P V z
119 118 a1i φ x Base P k f 0 I | f -1 Fin Fun z I k z mulGrp P V z
120 fvexd φ x Base P k f 0 I | f -1 Fin 1 P V
121 96 simprd φ x Base P k f 0 I | f -1 Fin k -1 Fin
122 elrabi k f 0 I | f -1 Fin k 0 I
123 elmapi k 0 I k : I 0
124 123 adantl φ x Base P k 0 I k : I 0
125 5 ad2antrr φ x Base P k 0 I I W
126 frnnn0supp I W k : I 0 k supp 0 = k -1
127 125 124 126 syl2anc φ x Base P k 0 I k supp 0 = k -1
128 eqimss k supp 0 = k -1 k supp 0 k -1
129 127 128 syl φ x Base P k 0 I k supp 0 k -1
130 c0ex 0 V
131 130 a1i φ x Base P k 0 I 0 V
132 124 129 125 131 suppssr φ x Base P k 0 I z I k -1 k z = 0
133 122 132 sylanl2 φ x Base P k f 0 I | f -1 Fin z I k -1 k z = 0
134 133 oveq1d φ x Base P k f 0 I | f -1 Fin z I k -1 k z mulGrp P V z = 0 mulGrp P V z
135 5 ad3antrrr φ x Base P k f 0 I | f -1 Fin z I k -1 I W
136 13 ad3antrrr φ x Base P k f 0 I | f -1 Fin z I k -1 R Ring
137 eldifi z I k -1 z I
138 137 adantl φ x Base P k f 0 I | f -1 Fin z I k -1 z I
139 1 3 8 135 136 138 mvrcl φ x Base P k f 0 I | f -1 Fin z I k -1 V z Base P
140 106 84 79 mulg0 V z Base P 0 mulGrp P V z = 1 P
141 139 140 syl φ x Base P k f 0 I | f -1 Fin z I k -1 0 mulGrp P V z = 1 P
142 134 141 eqtrd φ x Base P k f 0 I | f -1 Fin z I k -1 k z mulGrp P V z = 1 P
143 142 77 suppss2 φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z supp 1 P k -1
144 suppssfifsupp z I k z mulGrp P V z V Fun z I k z mulGrp P V z 1 P V k -1 Fin z I k z mulGrp P V z supp 1 P k -1 finSupp 1 P z I k z mulGrp P V z
145 117 119 120 121 143 144 syl32anc φ x Base P k f 0 I | f -1 Fin finSupp 1 P z I k z mulGrp P V z
146 84 89 77 92 115 145 gsumsubmcl φ x Base P k f 0 I | f -1 Fin mulGrp P z I k z mulGrp P V z A ran V
147 82 146 eqeltrd φ x Base P k f 0 I | f -1 Fin y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
148 eqid Scalar P = Scalar P
149 eqid Base Scalar P = Base Scalar P
150 148 36 149 65 lssvscl P LMod A ran V LSubSp P x k Base Scalar P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V x k P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
151 61 69 76 147 150 syl22anc φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
152 151 fmpttd φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R : f 0 I | f -1 Fin A ran V
153 46 mptrabex k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V
154 funmpt Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
155 fvex 0 P V
156 153 154 155 3pm3.2i k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R 0 P V
157 156 a1i φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R 0 P V
158 1 2 9 33 8 mplelbas x Base P x Base S finSupp 0 R x
159 158 simprbi x Base P finSupp 0 R x
160 159 adantl φ x Base P finSupp 0 R x
161 160 fsuppimpd φ x Base P x supp 0 R Fin
162 ssidd φ x Base P x supp 0 R x supp 0 R
163 fvexd φ x Base P 0 R V
164 71 162 48 163 suppssr φ x Base P k f 0 I | f -1 Fin supp 0 R x x k = 0 R
165 73 fveq2d φ x Base P 0 R = 0 Scalar P
166 165 adantr φ x Base P k f 0 I | f -1 Fin supp 0 R x 0 R = 0 Scalar P
167 164 166 eqtrd φ x Base P k f 0 I | f -1 Fin supp 0 R x x k = 0 Scalar P
168 167 oveq1d φ x Base P k f 0 I | f -1 Fin supp 0 R x x k P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R
169 eldifi k f 0 I | f -1 Fin supp 0 R x k f 0 I | f -1 Fin
170 13 ad2antrr φ x Base P k f 0 I | f -1 Fin R Ring
171 1 8 33 34 32 77 170 81 mplmon φ x Base P k f 0 I | f -1 Fin y f 0 I | f -1 Fin if y = k 1 R 0 R Base P
172 eqid 0 Scalar P = 0 Scalar P
173 8 148 36 172 40 lmod0vs P LMod y f 0 I | f -1 Fin if y = k 1 R 0 R Base P 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
174 61 171 173 syl2anc φ x Base P k f 0 I | f -1 Fin 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
175 169 174 sylan2 φ x Base P k f 0 I | f -1 Fin supp 0 R x 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
176 168 175 eqtrd φ x Base P k f 0 I | f -1 Fin supp 0 R x x k P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
177 176 48 suppss2 φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R supp 0 P x supp 0 R
178 suppssfifsupp k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R 0 P V x supp 0 R Fin k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R supp 0 P x supp 0 R finSupp 0 P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
179 157 161 177 178 syl12anc φ x Base P finSupp 0 P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
180 40 45 48 58 152 179 gsumsubgcl φ x Base P P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
181 39 180 eqeltrd φ x Base P x A ran V
182 31 181 eqelssd φ A ran V = Base P