| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclrhm.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
asclrhm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 4 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 5 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 8 |
2
|
assasca |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 9 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
| 10 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
| 11 |
1 2 10 9
|
ascl1 |
⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ‘ ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝑊 ) ) |
| 12 |
1 2 3 7 6
|
ascldimul |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 13 |
12
|
3expb |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 14 |
1 2 9 10
|
asclghm |
⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) ) |
| 15 |
3 4 5 6 7 8 9 11 13 14
|
isrhm2d |
⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 RingHom 𝑊 ) ) |