Metamath Proof Explorer


Theorem asclrhm

Description: The scalar injection is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclrhm.a 𝐴 = ( algSc ‘ 𝑊 )
asclrhm.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion asclrhm ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 RingHom 𝑊 ) )

Proof

Step Hyp Ref Expression
1 asclrhm.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclrhm.f 𝐹 = ( Scalar ‘ 𝑊 )
3 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
4 eqid ( 1r𝐹 ) = ( 1r𝐹 )
5 eqid ( 1r𝑊 ) = ( 1r𝑊 )
6 eqid ( .r𝐹 ) = ( .r𝐹 )
7 eqid ( .r𝑊 ) = ( .r𝑊 )
8 2 assasca ( 𝑊 ∈ AssAlg → 𝐹 ∈ CRing )
9 crngring ( 𝐹 ∈ CRing → 𝐹 ∈ Ring )
10 8 9 syl ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring )
11 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
12 3 4 ringidcl ( 𝐹 ∈ Ring → ( 1r𝐹 ) ∈ ( Base ‘ 𝐹 ) )
13 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
14 1 2 3 13 5 asclval ( ( 1r𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( 𝐴 ‘ ( 1r𝐹 ) ) = ( ( 1r𝐹 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
15 10 12 14 3syl ( 𝑊 ∈ AssAlg → ( 𝐴 ‘ ( 1r𝐹 ) ) = ( ( 1r𝐹 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
16 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
17 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
18 17 5 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
19 11 18 syl ( 𝑊 ∈ AssAlg → ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) )
20 17 2 13 4 lmodvs1 ( ( 𝑊 ∈ LMod ∧ ( 1r𝑊 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r𝐹 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) = ( 1r𝑊 ) )
21 16 19 20 syl2anc ( 𝑊 ∈ AssAlg → ( ( 1r𝐹 ) ( ·𝑠𝑊 ) ( 1r𝑊 ) ) = ( 1r𝑊 ) )
22 15 21 eqtrd ( 𝑊 ∈ AssAlg → ( 𝐴 ‘ ( 1r𝐹 ) ) = ( 1r𝑊 ) )
23 1 2 3 7 6 ascldimul ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝐴 ‘ ( 𝑥 ( .r𝐹 ) 𝑦 ) ) = ( ( 𝐴𝑥 ) ( .r𝑊 ) ( 𝐴𝑦 ) ) )
24 23 3expb ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( .r𝐹 ) 𝑦 ) ) = ( ( 𝐴𝑥 ) ( .r𝑊 ) ( 𝐴𝑦 ) ) )
25 1 2 11 16 asclghm ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) )
26 3 4 5 6 7 10 11 22 24 25 isrhm2d ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 RingHom 𝑊 ) )