| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
rnascl.o |
⊢ 1 = ( 1r ‘ 𝑊 ) |
| 3 |
|
rnascl.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 7 |
1 4 5 6 2
|
asclfval |
⊢ 𝐴 = ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) ) |
| 8 |
7
|
rnmpt |
⊢ ran 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } |
| 9 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
| 10 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 12 |
11 2
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → 1 ∈ ( Base ‘ 𝑊 ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 1 ∈ ( Base ‘ 𝑊 ) ) |
| 14 |
4 5 11 6 3
|
lspsn |
⊢ ( ( 𝑊 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } ) |
| 15 |
9 13 14
|
syl2anc |
⊢ ( 𝑊 ∈ AssAlg → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } ) |
| 16 |
8 15
|
eqtr4id |
⊢ ( 𝑊 ∈ AssAlg → ran 𝐴 = ( 𝑁 ‘ { 1 } ) ) |