| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubassa2.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
issubassa2.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 5 |
1 3 4
|
rnascl |
⊢ ( 𝑊 ∈ AssAlg → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) |
| 7 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → 𝑊 ∈ LMod ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → 𝑆 ∈ 𝐿 ) |
| 10 |
3
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) ∈ 𝑆 ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ( 1r ‘ 𝑊 ) ∈ 𝑆 ) |
| 12 |
2 4 8 9 11
|
ellspsn5 |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ⊆ 𝑆 ) |
| 13 |
6 12
|
eqsstrd |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ran 𝐴 ⊆ 𝑆 ) |
| 14 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 |
|
simplll |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑊 ∈ AssAlg ) |
| 17 |
|
simprl |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 19 |
18
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 20 |
19
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 21 |
20
|
sselda |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 22 |
21
|
adantrl |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 23 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 24 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 25 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 26 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 27 |
1 23 24 18 25 26
|
asclmul1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 28 |
16 17 22 27
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 29 |
|
simpllr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) |
| 30 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ran 𝐴 ⊆ 𝑆 ) |
| 31 |
1 23 24
|
asclfn |
⊢ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 32 |
31
|
a1i |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 |
|
fnfvelrn |
⊢ ( ( 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ran 𝐴 ) |
| 34 |
32 33
|
sylan |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ran 𝐴 ) |
| 35 |
30 34
|
sseldd |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ) |
| 36 |
35
|
adantrr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ) |
| 37 |
|
simprr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
| 38 |
25
|
subrgmcl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 39 |
29 36 37 38
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 40 |
28 39
|
eqeltrrd |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 41 |
40
|
ralrimivva |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 42 |
23 24 18 26 2
|
islss4 |
⊢ ( 𝑊 ∈ LMod → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 43 |
7 42
|
syl |
⊢ ( 𝑊 ∈ AssAlg → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 45 |
15 41 44
|
mpbir2and |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ 𝐿 ) |
| 46 |
13 45
|
impbida |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑆 ∈ 𝐿 ↔ ran 𝐴 ⊆ 𝑆 ) ) |