| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnascl.a |
|- A = ( algSc ` W ) |
| 2 |
|
rnascl.o |
|- .1. = ( 1r ` W ) |
| 3 |
|
rnascl.n |
|- N = ( LSpan ` W ) |
| 4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 5 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 6 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 7 |
1 4 5 6 2
|
asclfval |
|- A = ( y e. ( Base ` ( Scalar ` W ) ) |-> ( y ( .s ` W ) .1. ) ) |
| 8 |
7
|
rnmpt |
|- ran A = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } |
| 9 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
| 10 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
| 11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 12 |
11 2
|
ringidcl |
|- ( W e. Ring -> .1. e. ( Base ` W ) ) |
| 13 |
10 12
|
syl |
|- ( W e. AssAlg -> .1. e. ( Base ` W ) ) |
| 14 |
4 5 11 6 3
|
lspsn |
|- ( ( W e. LMod /\ .1. e. ( Base ` W ) ) -> ( N ` { .1. } ) = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } ) |
| 15 |
9 13 14
|
syl2anc |
|- ( W e. AssAlg -> ( N ` { .1. } ) = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } ) |
| 16 |
8 15
|
eqtr4id |
|- ( W e. AssAlg -> ran A = ( N ` { .1. } ) ) |