| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgascl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
subrgascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 3 |
|
subrgascl.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 4 |
|
subrgascl.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) |
| 5 |
|
subrgascl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
subrgascl.r |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
subrgasclcl.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 8 |
|
subrgasclcl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 9 |
|
subrgasclcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 10 |
|
iftrue |
⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) = 𝑋 ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → ( if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ↔ 𝑋 ∈ ( Base ‘ 𝐻 ) ) ) |
| 12 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 14 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 15 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 17 |
|
subrgrcl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 18 |
6 17
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 19 |
1 14 16 8 2 5 18 9
|
mplascl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ) |
| 21 |
3
|
subrgring |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
| 22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
| 23 |
12 4 7 5 22
|
mplsubrg |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 24 |
15
|
subrgss |
⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝐻 ) ) → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 26 |
25
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 27 |
20 26
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 28 |
12 13 14 15 27
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 29 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) |
| 30 |
29
|
fmpt |
⊢ ( ∀ 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 31 |
28 30
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) |
| 33 |
14
|
psrbag0 |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { 0 } ) ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐼 × { 0 } ) ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 35 |
11 31 34
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 36 |
3
|
subrgbas |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 37 |
6 36
|
syl |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 39 |
35 38
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝑋 ∈ 𝑇 ) |
| 40 |
|
eqid |
⊢ ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 ) |
| 41 |
1 2 3 4 5 6 40
|
subrgascl |
⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) = ( 𝐴 ↾ 𝑇 ) ) |
| 42 |
41
|
fveq1d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ 𝑋 ) = ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑋 ) ) |
| 43 |
|
fvres |
⊢ ( 𝑋 ∈ 𝑇 → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
| 44 |
42 43
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( ( algSc ‘ 𝑈 ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
| 45 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 46 |
4
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐻 ∈ Ring ) → 𝑈 ∈ Ring ) |
| 47 |
4
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐻 ∈ Ring ) → 𝑈 ∈ LMod ) |
| 48 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
| 49 |
40 45 46 47 48 7
|
asclf |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐻 ∈ Ring ) → ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) |
| 50 |
5 22 49
|
syl2anc |
⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) |
| 52 |
4 5 22
|
mplsca |
⊢ ( 𝜑 → 𝐻 = ( Scalar ‘ 𝑈 ) ) |
| 53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 54 |
37 53
|
eqtrd |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 55 |
54
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑇 ↔ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 56 |
55
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 57 |
51 56
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( ( algSc ‘ 𝑈 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 58 |
44 57
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) |
| 59 |
39 58
|
impbida |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇 ) ) |