| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplascl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplascl.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 3 |
|
mplascl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplascl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 5 |
|
mplascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 6 |
|
mplascl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 7 |
|
mplascl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
|
mplascl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
1 6 7
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 11 |
4 10
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 12 |
8 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 13 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 16 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 17 |
5 13 14 15 16
|
asclval |
⊢ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 18 |
12 17
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 20 |
1 2 3 19 16 6 7
|
mpl1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 22 |
2
|
psrbag0 |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 23 |
6 22
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 24 |
1 15 2 19 3 4 6 7 23 8
|
mplmon2 |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
| 25 |
18 21 24
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |