Metamath Proof Explorer


Theorem subrgascl

Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgascl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
subrgascl.a 𝐴 = ( algSc ‘ 𝑃 )
subrgascl.h 𝐻 = ( 𝑅s 𝑇 )
subrgascl.u 𝑈 = ( 𝐼 mPoly 𝐻 )
subrgascl.i ( 𝜑𝐼𝑊 )
subrgascl.r ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
subrgascl.c 𝐶 = ( algSc ‘ 𝑈 )
Assertion subrgascl ( 𝜑𝐶 = ( 𝐴𝑇 ) )

Proof

Step Hyp Ref Expression
1 subrgascl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 subrgascl.a 𝐴 = ( algSc ‘ 𝑃 )
3 subrgascl.h 𝐻 = ( 𝑅s 𝑇 )
4 subrgascl.u 𝑈 = ( 𝐼 mPoly 𝐻 )
5 subrgascl.i ( 𝜑𝐼𝑊 )
6 subrgascl.r ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
7 subrgascl.c 𝐶 = ( algSc ‘ 𝑈 )
8 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
9 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
10 7 8 9 asclfn 𝐶 Fn ( Base ‘ ( Scalar ‘ 𝑈 ) )
11 3 subrgbas ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) )
12 6 11 syl ( 𝜑𝑇 = ( Base ‘ 𝐻 ) )
13 3 ovexi 𝐻 ∈ V
14 13 a1i ( 𝜑𝐻 ∈ V )
15 4 5 14 mplsca ( 𝜑𝐻 = ( Scalar ‘ 𝑈 ) )
16 15 fveq2d ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
17 12 16 eqtrd ( 𝜑𝑇 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
18 17 fneq2d ( 𝜑 → ( 𝐶 Fn 𝑇𝐶 Fn ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) )
19 10 18 mpbiri ( 𝜑𝐶 Fn 𝑇 )
20 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
21 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
22 2 20 21 asclfn 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑃 ) )
23 subrgrcl ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring )
24 6 23 syl ( 𝜑𝑅 ∈ Ring )
25 1 5 24 mplsca ( 𝜑𝑅 = ( Scalar ‘ 𝑃 ) )
26 25 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
27 26 fneq2d ( 𝜑 → ( 𝐴 Fn ( Base ‘ 𝑅 ) ↔ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) )
28 22 27 mpbiri ( 𝜑𝐴 Fn ( Base ‘ 𝑅 ) )
29 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
30 29 subrgss ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) )
31 6 30 syl ( 𝜑𝑇 ⊆ ( Base ‘ 𝑅 ) )
32 fnssres ( ( 𝐴 Fn ( Base ‘ 𝑅 ) ∧ 𝑇 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐴𝑇 ) Fn 𝑇 )
33 28 31 32 syl2anc ( 𝜑 → ( 𝐴𝑇 ) Fn 𝑇 )
34 fvres ( 𝑥𝑇 → ( ( 𝐴𝑇 ) ‘ 𝑥 ) = ( 𝐴𝑥 ) )
35 34 adantl ( ( 𝜑𝑥𝑇 ) → ( ( 𝐴𝑇 ) ‘ 𝑥 ) = ( 𝐴𝑥 ) )
36 eqid ( 0g𝑅 ) = ( 0g𝑅 )
37 3 36 subrg0 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g𝑅 ) = ( 0g𝐻 ) )
38 6 37 syl ( 𝜑 → ( 0g𝑅 ) = ( 0g𝐻 ) )
39 38 ifeq2d ( 𝜑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝑅 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝐻 ) ) )
40 39 adantr ( ( 𝜑𝑥𝑇 ) → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝑅 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝐻 ) ) )
41 40 mpteq2dv ( ( 𝜑𝑥𝑇 ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝑅 ) ) ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝐻 ) ) ) )
42 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
43 5 adantr ( ( 𝜑𝑥𝑇 ) → 𝐼𝑊 )
44 24 adantr ( ( 𝜑𝑥𝑇 ) → 𝑅 ∈ Ring )
45 31 sselda ( ( 𝜑𝑥𝑇 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
46 1 42 36 29 2 43 44 45 mplascl ( ( 𝜑𝑥𝑇 ) → ( 𝐴𝑥 ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝑅 ) ) ) )
47 eqid ( 0g𝐻 ) = ( 0g𝐻 )
48 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
49 3 subrgring ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring )
50 6 49 syl ( 𝜑𝐻 ∈ Ring )
51 50 adantr ( ( 𝜑𝑥𝑇 ) → 𝐻 ∈ Ring )
52 12 eleq2d ( 𝜑 → ( 𝑥𝑇𝑥 ∈ ( Base ‘ 𝐻 ) ) )
53 52 biimpa ( ( 𝜑𝑥𝑇 ) → 𝑥 ∈ ( Base ‘ 𝐻 ) )
54 4 42 47 48 7 43 51 53 mplascl ( ( 𝜑𝑥𝑇 ) → ( 𝐶𝑥 ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g𝐻 ) ) ) )
55 41 46 54 3eqtr4d ( ( 𝜑𝑥𝑇 ) → ( 𝐴𝑥 ) = ( 𝐶𝑥 ) )
56 35 55 eqtr2d ( ( 𝜑𝑥𝑇 ) → ( 𝐶𝑥 ) = ( ( 𝐴𝑇 ) ‘ 𝑥 ) )
57 19 33 56 eqfnfvd ( 𝜑𝐶 = ( 𝐴𝑇 ) )