Step |
Hyp |
Ref |
Expression |
1 |
|
subrgascl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
subrgascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
subrgascl.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
4 |
|
subrgascl.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) |
5 |
|
subrgascl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
subrgascl.r |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
7 |
|
subrgascl.c |
⊢ 𝐶 = ( algSc ‘ 𝑈 ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
10 |
7 8 9
|
asclfn |
⊢ 𝐶 Fn ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
11 |
3
|
subrgbas |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
13 |
3
|
ovexi |
⊢ 𝐻 ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
15 |
4 5 14
|
mplsca |
⊢ ( 𝜑 → 𝐻 = ( Scalar ‘ 𝑈 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
17 |
12 16
|
eqtrd |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
18 |
17
|
fneq2d |
⊢ ( 𝜑 → ( 𝐶 Fn 𝑇 ↔ 𝐶 Fn ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
19 |
10 18
|
mpbiri |
⊢ ( 𝜑 → 𝐶 Fn 𝑇 ) |
20 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
22 |
2 20 21
|
asclfn |
⊢ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
23 |
|
subrgrcl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
24 |
6 23
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
25 |
1 5 24
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
27 |
26
|
fneq2d |
⊢ ( 𝜑 → ( 𝐴 Fn ( Base ‘ 𝑅 ) ↔ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
28 |
22 27
|
mpbiri |
⊢ ( 𝜑 → 𝐴 Fn ( Base ‘ 𝑅 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
30 |
29
|
subrgss |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
31 |
6 30
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
32 |
|
fnssres |
⊢ ( ( 𝐴 Fn ( Base ‘ 𝑅 ) ∧ 𝑇 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐴 ↾ 𝑇 ) Fn 𝑇 ) |
33 |
28 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝑇 ) Fn 𝑇 ) |
34 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑇 → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
36 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
37 |
3 36
|
subrg0 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
38 |
6 37
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
39 |
38
|
ifeq2d |
⊢ ( 𝜑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) |
41 |
40
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) ) |
42 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
43 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝐼 ∈ 𝑊 ) |
44 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑅 ∈ Ring ) |
45 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
46 |
1 42 36 29 2 43 44 45
|
mplascl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) |
47 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
48 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
49 |
3
|
subrgring |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
50 |
6 49
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝐻 ∈ Ring ) |
52 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
53 |
52
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
54 |
4 42 47 48 7 43 51 53
|
mplascl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐶 ‘ 𝑥 ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) ) |
55 |
41 46 54
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑥 ) ) |
56 |
35 55
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐶 ‘ 𝑥 ) = ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑥 ) ) |
57 |
19 33 56
|
eqfnfvd |
⊢ ( 𝜑 → 𝐶 = ( 𝐴 ↾ 𝑇 ) ) |