Metamath Proof Explorer


Theorem ply1ascl

Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by Fan Zheng, 26-Jun-2016)

Ref Expression
Hypotheses ply1ascl.p P = Poly 1 R
ply1ascl.a A = algSc P
Assertion ply1ascl A = algSc 1 𝑜 mPoly R

Proof

Step Hyp Ref Expression
1 ply1ascl.p P = Poly 1 R
2 ply1ascl.a A = algSc P
3 eqid Scalar P = Scalar P
4 eqid Scalar 1 𝑜 mPoly R = Scalar 1 𝑜 mPoly R
5 1 ply1sca R V R = Scalar P
6 5 fveq2d R V Base R = Base Scalar P
7 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
8 1on 1 𝑜 On
9 8 a1i R V 1 𝑜 On
10 id R V R V
11 7 9 10 mplsca R V R = Scalar 1 𝑜 mPoly R
12 11 fveq2d R V Base R = Base Scalar 1 𝑜 mPoly R
13 eqid P = P
14 1 7 13 ply1vsca P = 1 𝑜 mPoly R
15 14 a1i R V P = 1 𝑜 mPoly R
16 15 oveqdr R V x Base R y V x P y = x 1 𝑜 mPoly R y
17 eqid 1 P = 1 P
18 7 1 17 ply1mpl1 1 P = 1 1 𝑜 mPoly R
19 18 a1i R V 1 P = 1 1 𝑜 mPoly R
20 fvexd R V 1 P V
21 3 4 6 12 16 19 20 asclpropd R V algSc P = algSc 1 𝑜 mPoly R
22 fvprc ¬ R V Poly 1 R =
23 1 22 syl5eq ¬ R V P =
24 reldmmpl Rel dom mPoly
25 24 ovprc2 ¬ R V 1 𝑜 mPoly R =
26 23 25 eqtr4d ¬ R V P = 1 𝑜 mPoly R
27 26 fveq2d ¬ R V algSc P = algSc 1 𝑜 mPoly R
28 21 27 pm2.61i algSc P = algSc 1 𝑜 mPoly R
29 2 28 eqtri A = algSc 1 𝑜 mPoly R