Metamath Proof Explorer


Theorem ply1ascl

Description: The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by Fan Zheng, 26-Jun-2016)

Ref Expression
Hypotheses ply1ascl.p 𝑃 = ( Poly1𝑅 )
ply1ascl.a 𝐴 = ( algSc ‘ 𝑃 )
Assertion ply1ascl 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ply1ascl.p 𝑃 = ( Poly1𝑅 )
2 ply1ascl.a 𝐴 = ( algSc ‘ 𝑃 )
3 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
4 eqid ( Scalar ‘ ( 1o mPoly 𝑅 ) ) = ( Scalar ‘ ( 1o mPoly 𝑅 ) )
5 1 ply1sca ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ 𝑃 ) )
6 5 fveq2d ( 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
7 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
8 1on 1o ∈ On
9 8 a1i ( 𝑅 ∈ V → 1o ∈ On )
10 id ( 𝑅 ∈ V → 𝑅 ∈ V )
11 7 9 10 mplsca ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ ( 1o mPoly 𝑅 ) ) )
12 11 fveq2d ( 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( 1o mPoly 𝑅 ) ) ) )
13 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
14 1 7 13 ply1vsca ( ·𝑠𝑃 ) = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) )
15 14 a1i ( 𝑅 ∈ V → ( ·𝑠𝑃 ) = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) )
16 15 oveqdr ( ( 𝑅 ∈ V ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( ·𝑠𝑃 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) )
17 eqid ( 1r𝑃 ) = ( 1r𝑃 )
18 7 1 17 ply1mpl1 ( 1r𝑃 ) = ( 1r ‘ ( 1o mPoly 𝑅 ) )
19 18 a1i ( 𝑅 ∈ V → ( 1r𝑃 ) = ( 1r ‘ ( 1o mPoly 𝑅 ) ) )
20 fvexd ( 𝑅 ∈ V → ( 1r𝑃 ) ∈ V )
21 3 4 6 12 16 19 20 asclpropd ( 𝑅 ∈ V → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) )
22 fvprc ( ¬ 𝑅 ∈ V → ( Poly1𝑅 ) = ∅ )
23 1 22 syl5eq ( ¬ 𝑅 ∈ V → 𝑃 = ∅ )
24 reldmmpl Rel dom mPoly
25 24 ovprc2 ( ¬ 𝑅 ∈ V → ( 1o mPoly 𝑅 ) = ∅ )
26 23 25 eqtr4d ( ¬ 𝑅 ∈ V → 𝑃 = ( 1o mPoly 𝑅 ) )
27 26 fveq2d ( ¬ 𝑅 ∈ V → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) )
28 21 27 pm2.61i ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) )
29 2 28 eqtri 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) )