| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1sclle.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1sclle.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1sclle.k |
|- K = ( Base ` R ) |
| 4 |
|
deg1sclle.a |
|- A = ( algSc ` P ) |
| 5 |
2 4 3
|
ply1sclid |
|- ( ( R e. Ring /\ F e. K ) -> F = ( ( coe1 ` ( A ` F ) ) ` 0 ) ) |
| 6 |
5
|
fveq2d |
|- ( ( R e. Ring /\ F e. K ) -> ( A ` F ) = ( A ` ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) |
| 7 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 8 |
2 4 3 7
|
ply1sclcl |
|- ( ( R e. Ring /\ F e. K ) -> ( A ` F ) e. ( Base ` P ) ) |
| 9 |
1 2 7 4
|
deg1le0 |
|- ( ( R e. Ring /\ ( A ` F ) e. ( Base ` P ) ) -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( A ` F ) = ( A ` ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) ) |
| 10 |
8 9
|
syldan |
|- ( ( R e. Ring /\ F e. K ) -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( A ` F ) = ( A ` ( ( coe1 ` ( A ` F ) ) ` 0 ) ) ) ) |
| 11 |
6 10
|
mpbird |
|- ( ( R e. Ring /\ F e. K ) -> ( D ` ( A ` F ) ) <_ 0 ) |