| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1sclle.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1sclle.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1sclle.k |
|- K = ( Base ` R ) |
| 4 |
|
deg1sclle.a |
|- A = ( algSc ` P ) |
| 5 |
|
deg1scl.z |
|- .0. = ( 0g ` R ) |
| 6 |
1 2 3 4
|
deg1sclle |
|- ( ( R e. Ring /\ F e. K ) -> ( D ` ( A ` F ) ) <_ 0 ) |
| 7 |
6
|
3adant3 |
|- ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( D ` ( A ` F ) ) <_ 0 ) |
| 8 |
|
simp1 |
|- ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> R e. Ring ) |
| 9 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 10 |
2 4 3 9
|
ply1sclcl |
|- ( ( R e. Ring /\ F e. K ) -> ( A ` F ) e. ( Base ` P ) ) |
| 11 |
10
|
3adant3 |
|- ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( A ` F ) e. ( Base ` P ) ) |
| 12 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 13 |
2 4 5 12 3
|
ply1scln0 |
|- ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( A ` F ) =/= ( 0g ` P ) ) |
| 14 |
1 2 12 9
|
deg1nn0cl |
|- ( ( R e. Ring /\ ( A ` F ) e. ( Base ` P ) /\ ( A ` F ) =/= ( 0g ` P ) ) -> ( D ` ( A ` F ) ) e. NN0 ) |
| 15 |
8 11 13 14
|
syl3anc |
|- ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( D ` ( A ` F ) ) e. NN0 ) |
| 16 |
|
nn0le0eq0 |
|- ( ( D ` ( A ` F ) ) e. NN0 -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( D ` ( A ` F ) ) = 0 ) ) |
| 17 |
15 16
|
syl |
|- ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( ( D ` ( A ` F ) ) <_ 0 <-> ( D ` ( A ` F ) ) = 0 ) ) |
| 18 |
7 17
|
mpbid |
|- ( ( R e. Ring /\ F e. K /\ F =/= .0. ) -> ( D ` ( A ` F ) ) = 0 ) |