| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1sclle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 2 |
|
deg1sclle.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
deg1sclle.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
deg1sclle.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 5 |
|
deg1scl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
1 2 3 4
|
deg1sclle |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ≤ 0 ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ≤ 0 ) |
| 8 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → 𝑅 ∈ Ring ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 10 |
2 4 3 9
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 13 |
2 4 5 12 3
|
ply1scln0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → ( 𝐴 ‘ 𝐹 ) ≠ ( 0g ‘ 𝑃 ) ) |
| 14 |
1 2 12 9
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐴 ‘ 𝐹 ) ≠ ( 0g ‘ 𝑃 ) ) → ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ∈ ℕ0 ) |
| 15 |
8 11 13 14
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ∈ ℕ0 ) |
| 16 |
|
nn0le0eq0 |
⊢ ( ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ∈ ℕ0 → ( ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ≤ 0 ↔ ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) = 0 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → ( ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ≤ 0 ↔ ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) = 0 ) ) |
| 18 |
7 17
|
mpbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) = 0 ) |