Metamath Proof Explorer


Theorem deg1mul2

Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1mul2.d 𝐷 = ( deg1𝑅 )
deg1mul2.p 𝑃 = ( Poly1𝑅 )
deg1mul2.e 𝐸 = ( RLReg ‘ 𝑅 )
deg1mul2.b 𝐵 = ( Base ‘ 𝑃 )
deg1mul2.t · = ( .r𝑃 )
deg1mul2.z 0 = ( 0g𝑃 )
deg1mul2.r ( 𝜑𝑅 ∈ Ring )
deg1mul2.fb ( 𝜑𝐹𝐵 )
deg1mul2.fz ( 𝜑𝐹0 )
deg1mul2.fc ( 𝜑 → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ 𝐸 )
deg1mul2.gb ( 𝜑𝐺𝐵 )
deg1mul2.gz ( 𝜑𝐺0 )
Assertion deg1mul2 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 deg1mul2.d 𝐷 = ( deg1𝑅 )
2 deg1mul2.p 𝑃 = ( Poly1𝑅 )
3 deg1mul2.e 𝐸 = ( RLReg ‘ 𝑅 )
4 deg1mul2.b 𝐵 = ( Base ‘ 𝑃 )
5 deg1mul2.t · = ( .r𝑃 )
6 deg1mul2.z 0 = ( 0g𝑃 )
7 deg1mul2.r ( 𝜑𝑅 ∈ Ring )
8 deg1mul2.fb ( 𝜑𝐹𝐵 )
9 deg1mul2.fz ( 𝜑𝐹0 )
10 deg1mul2.fc ( 𝜑 → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ 𝐸 )
11 deg1mul2.gb ( 𝜑𝐺𝐵 )
12 deg1mul2.gz ( 𝜑𝐺0 )
13 2 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
14 7 13 syl ( 𝜑𝑃 ∈ Ring )
15 4 5 ringcl ( ( 𝑃 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 · 𝐺 ) ∈ 𝐵 )
16 14 8 11 15 syl3anc ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 )
17 1 2 4 deg1xrcl ( ( 𝐹 · 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ∈ ℝ* )
18 16 17 syl ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ∈ ℝ* )
19 1 2 6 4 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )
20 7 8 9 19 syl3anc ( 𝜑 → ( 𝐷𝐹 ) ∈ ℕ0 )
21 1 2 6 4 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → ( 𝐷𝐺 ) ∈ ℕ0 )
22 7 11 12 21 syl3anc ( 𝜑 → ( 𝐷𝐺 ) ∈ ℕ0 )
23 20 22 nn0addcld ( 𝜑 → ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ∈ ℕ0 )
24 23 nn0red ( 𝜑 → ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ∈ ℝ )
25 24 rexrd ( 𝜑 → ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ∈ ℝ* )
26 20 nn0red ( 𝜑 → ( 𝐷𝐹 ) ∈ ℝ )
27 26 leidd ( 𝜑 → ( 𝐷𝐹 ) ≤ ( 𝐷𝐹 ) )
28 22 nn0red ( 𝜑 → ( 𝐷𝐺 ) ∈ ℝ )
29 28 leidd ( 𝜑 → ( 𝐷𝐺 ) ≤ ( 𝐷𝐺 ) )
30 2 1 7 4 5 8 11 20 22 27 29 deg1mulle2 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) )
31 eqid ( .r𝑅 ) = ( .r𝑅 )
32 2 5 31 4 1 6 7 8 9 11 12 coe1mul4 ( 𝜑 → ( ( coe1 ‘ ( 𝐹 · 𝐺 ) ) ‘ ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ) = ( ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ) )
33 eqid ( 0g𝑅 ) = ( 0g𝑅 )
34 eqid ( coe1𝐺 ) = ( coe1𝐺 )
35 1 2 6 4 33 34 deg1ldg ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ≠ ( 0g𝑅 ) )
36 7 11 12 35 syl3anc ( 𝜑 → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ≠ ( 0g𝑅 ) )
37 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
38 34 4 2 37 coe1f ( 𝐺𝐵 → ( coe1𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
39 11 38 syl ( 𝜑 → ( coe1𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
40 39 22 ffvelrnd ( 𝜑 → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ∈ ( Base ‘ 𝑅 ) )
41 3 37 31 33 rrgeq0i ( ( ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ 𝐸 ∧ ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ) = ( 0g𝑅 ) → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) = ( 0g𝑅 ) ) )
42 10 40 41 syl2anc ( 𝜑 → ( ( ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ) = ( 0g𝑅 ) → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) = ( 0g𝑅 ) ) )
43 42 necon3d ( 𝜑 → ( ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ≠ ( 0g𝑅 ) → ( ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ) ≠ ( 0g𝑅 ) ) )
44 36 43 mpd ( 𝜑 → ( ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ) ≠ ( 0g𝑅 ) )
45 32 44 eqnetrd ( 𝜑 → ( ( coe1 ‘ ( 𝐹 · 𝐺 ) ) ‘ ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ) ≠ ( 0g𝑅 ) )
46 eqid ( coe1 ‘ ( 𝐹 · 𝐺 ) ) = ( coe1 ‘ ( 𝐹 · 𝐺 ) )
47 1 2 4 33 46 deg1ge ( ( ( 𝐹 · 𝐺 ) ∈ 𝐵 ∧ ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ∈ ℕ0 ∧ ( ( coe1 ‘ ( 𝐹 · 𝐺 ) ) ‘ ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ) ≠ ( 0g𝑅 ) ) → ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ≤ ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) )
48 16 23 45 47 syl3anc ( 𝜑 → ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) ≤ ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) )
49 18 25 30 48 xrletrid ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) )