Metamath Proof Explorer


Theorem deg1mulle2

Description: Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y 𝑌 = ( Poly1𝑅 )
deg1addle.d 𝐷 = ( deg1𝑅 )
deg1addle.r ( 𝜑𝑅 ∈ Ring )
deg1mulle2.b 𝐵 = ( Base ‘ 𝑌 )
deg1mulle2.t · = ( .r𝑌 )
deg1mulle2.f ( 𝜑𝐹𝐵 )
deg1mulle2.g ( 𝜑𝐺𝐵 )
deg1mulle2.j1 ( 𝜑𝐽 ∈ ℕ0 )
deg1mulle2.k1 ( 𝜑𝐾 ∈ ℕ0 )
deg1mulle2.j2 ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐽 )
deg1mulle2.k2 ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐾 )
Assertion deg1mulle2 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐽 + 𝐾 ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y 𝑌 = ( Poly1𝑅 )
2 deg1addle.d 𝐷 = ( deg1𝑅 )
3 deg1addle.r ( 𝜑𝑅 ∈ Ring )
4 deg1mulle2.b 𝐵 = ( Base ‘ 𝑌 )
5 deg1mulle2.t · = ( .r𝑌 )
6 deg1mulle2.f ( 𝜑𝐹𝐵 )
7 deg1mulle2.g ( 𝜑𝐺𝐵 )
8 deg1mulle2.j1 ( 𝜑𝐽 ∈ ℕ0 )
9 deg1mulle2.k1 ( 𝜑𝐾 ∈ ℕ0 )
10 deg1mulle2.j2 ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐽 )
11 deg1mulle2.k2 ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐾 )
12 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
13 2 deg1fval 𝐷 = ( 1o mDeg 𝑅 )
14 1on 1o ∈ On
15 14 a1i ( 𝜑 → 1o ∈ On )
16 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
17 1 16 4 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
18 1 12 5 ply1mulr · = ( .r ‘ ( 1o mPoly 𝑅 ) )
19 12 13 15 3 17 18 6 7 8 9 10 11 mdegmulle2 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐽 + 𝐾 ) )