Metamath Proof Explorer


Theorem deg1mulle2

Description: Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1mulle2.b B=BaseY
deg1mulle2.t ·˙=Y
deg1mulle2.f φFB
deg1mulle2.g φGB
deg1mulle2.j1 φJ0
deg1mulle2.k1 φK0
deg1mulle2.j2 φDFJ
deg1mulle2.k2 φDGK
Assertion deg1mulle2 φDF·˙GJ+K

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1mulle2.b B=BaseY
5 deg1mulle2.t ·˙=Y
6 deg1mulle2.f φFB
7 deg1mulle2.g φGB
8 deg1mulle2.j1 φJ0
9 deg1mulle2.k1 φK0
10 deg1mulle2.j2 φDFJ
11 deg1mulle2.k2 φDGK
12 eqid 1𝑜mPolyR=1𝑜mPolyR
13 2 deg1fval D=1𝑜mDegR
14 1on 1𝑜On
15 14 a1i φ1𝑜On
16 eqid PwSer1R=PwSer1R
17 1 16 4 ply1bas B=Base1𝑜mPolyR
18 1 12 5 ply1mulr ·˙=1𝑜mPolyR
19 12 13 15 3 17 18 6 7 8 9 10 11 mdegmulle2 φDF·˙GJ+K