Description: Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | deg1addle.y | |- Y = ( Poly1 ` R ) |
|
| deg1addle.d | |- D = ( deg1 ` R ) |
||
| deg1addle.r | |- ( ph -> R e. Ring ) |
||
| deg1mulle2.b | |- B = ( Base ` Y ) |
||
| deg1mulle2.t | |- .x. = ( .r ` Y ) |
||
| deg1mulle2.f | |- ( ph -> F e. B ) |
||
| deg1mulle2.g | |- ( ph -> G e. B ) |
||
| deg1mulle2.j1 | |- ( ph -> J e. NN0 ) |
||
| deg1mulle2.k1 | |- ( ph -> K e. NN0 ) |
||
| deg1mulle2.j2 | |- ( ph -> ( D ` F ) <_ J ) |
||
| deg1mulle2.k2 | |- ( ph -> ( D ` G ) <_ K ) |
||
| Assertion | deg1mulle2 | |- ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1addle.y | |- Y = ( Poly1 ` R ) |
|
| 2 | deg1addle.d | |- D = ( deg1 ` R ) |
|
| 3 | deg1addle.r | |- ( ph -> R e. Ring ) |
|
| 4 | deg1mulle2.b | |- B = ( Base ` Y ) |
|
| 5 | deg1mulle2.t | |- .x. = ( .r ` Y ) |
|
| 6 | deg1mulle2.f | |- ( ph -> F e. B ) |
|
| 7 | deg1mulle2.g | |- ( ph -> G e. B ) |
|
| 8 | deg1mulle2.j1 | |- ( ph -> J e. NN0 ) |
|
| 9 | deg1mulle2.k1 | |- ( ph -> K e. NN0 ) |
|
| 10 | deg1mulle2.j2 | |- ( ph -> ( D ` F ) <_ J ) |
|
| 11 | deg1mulle2.k2 | |- ( ph -> ( D ` G ) <_ K ) |
|
| 12 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 13 | 2 | deg1fval | |- D = ( 1o mDeg R ) |
| 14 | 1on | |- 1o e. On |
|
| 15 | 14 | a1i | |- ( ph -> 1o e. On ) |
| 16 | 1 4 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
| 17 | 1 12 5 | ply1mulr | |- .x. = ( .r ` ( 1o mPoly R ) ) |
| 18 | 12 13 15 3 16 17 6 7 8 9 10 11 | mdegmulle2 | |- ( ph -> ( D ` ( F .x. G ) ) <_ ( J + K ) ) |