Metamath Proof Explorer


Theorem mdegmulle2

Description: The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y Y=ImPolyR
mdegaddle.d D=ImDegR
mdegaddle.i φIV
mdegaddle.r φRRing
mdegmulle2.b B=BaseY
mdegmulle2.t ·˙=Y
mdegmulle2.f φFB
mdegmulle2.g φGB
mdegmulle2.j1 φJ0
mdegmulle2.k1 φK0
mdegmulle2.j2 φDFJ
mdegmulle2.k2 φDGK
Assertion mdegmulle2 φDF·˙GJ+K

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y=ImPolyR
2 mdegaddle.d D=ImDegR
3 mdegaddle.i φIV
4 mdegaddle.r φRRing
5 mdegmulle2.b B=BaseY
6 mdegmulle2.t ·˙=Y
7 mdegmulle2.f φFB
8 mdegmulle2.g φGB
9 mdegmulle2.j1 φJ0
10 mdegmulle2.k1 φK0
11 mdegmulle2.j2 φDFJ
12 mdegmulle2.k2 φDGK
13 eqid a0I|a-1Fin=a0I|a-1Fin
14 eqid ba0I|a-1Finfldb=ba0I|a-1Finfldb
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mdegmullem φDF·˙GJ+K