| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdegaddle.y | ⊢ 𝑌  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mdegaddle.d | ⊢ 𝐷  =  ( 𝐼  mDeg  𝑅 ) | 
						
							| 3 |  | mdegaddle.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | mdegaddle.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | mdegmulle2.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 6 |  | mdegmulle2.t | ⊢  ·   =  ( .r ‘ 𝑌 ) | 
						
							| 7 |  | mdegmulle2.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 8 |  | mdegmulle2.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 9 |  | mdegmulle2.j1 | ⊢ ( 𝜑  →  𝐽  ∈  ℕ0 ) | 
						
							| 10 |  | mdegmulle2.k1 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 11 |  | mdegmulle2.j2 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  ≤  𝐽 ) | 
						
							| 12 |  | mdegmulle2.k2 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐺 )  ≤  𝐾 ) | 
						
							| 13 |  | eqid | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑎  “  ℕ )  ∈  Fin }  =  { 𝑎  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑎  “  ℕ )  ∈  Fin } | 
						
							| 14 |  | eqid | ⊢ ( 𝑏  ∈  { 𝑎  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑎  “  ℕ )  ∈  Fin }  ↦  ( ℂfld  Σg  𝑏 ) )  =  ( 𝑏  ∈  { 𝑎  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑎  “  ℕ )  ∈  Fin }  ↦  ( ℂfld  Σg  𝑏 ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | mdegmullem | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐹  ·  𝐺 ) )  ≤  ( 𝐽  +  𝐾 ) ) |