Metamath Proof Explorer


Theorem deg1sublt

Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1sublt.d D=deg1R
deg1sublt.p P=Poly1R
deg1sublt.b B=BaseP
deg1sublt.m -˙=-P
deg1sublt.l φL0
deg1sublt.r φRRing
deg1sublt.fb φFB
deg1sublt.fd φDFL
deg1sublt.gb φGB
deg1sublt.gd φDGL
deg1sublt.a A=coe1F
deg1sublt.c C=coe1G
deg1sublt.eq φcoe1FL=coe1GL
Assertion deg1sublt φDF-˙G<L

Proof

Step Hyp Ref Expression
1 deg1sublt.d D=deg1R
2 deg1sublt.p P=Poly1R
3 deg1sublt.b B=BaseP
4 deg1sublt.m -˙=-P
5 deg1sublt.l φL0
6 deg1sublt.r φRRing
7 deg1sublt.fb φFB
8 deg1sublt.fd φDFL
9 deg1sublt.gb φGB
10 deg1sublt.gd φDGL
11 deg1sublt.a A=coe1F
12 deg1sublt.c C=coe1G
13 deg1sublt.eq φcoe1FL=coe1GL
14 eqid 0P=0P
15 eqid 0R=0R
16 eqid coe1F-˙G=coe1F-˙G
17 2 ply1ring RRingPRing
18 ringgrp PRingPGrp
19 6 17 18 3syl φPGrp
20 3 4 grpsubcl PGrpFBGBF-˙GB
21 19 7 9 20 syl3anc φF-˙GB
22 eqid -R=-R
23 2 3 4 22 coe1subfv RRingFBGBL0coe1F-˙GL=coe1FL-Rcoe1GL
24 6 7 9 5 23 syl31anc φcoe1F-˙GL=coe1FL-Rcoe1GL
25 13 oveq1d φcoe1FL-Rcoe1GL=coe1GL-Rcoe1GL
26 ringgrp RRingRGrp
27 6 26 syl φRGrp
28 eqid coe1G=coe1G
29 eqid BaseR=BaseR
30 28 3 2 29 coe1f GBcoe1G:0BaseR
31 9 30 syl φcoe1G:0BaseR
32 31 5 ffvelcdmd φcoe1GLBaseR
33 29 15 22 grpsubid RGrpcoe1GLBaseRcoe1GL-Rcoe1GL=0R
34 27 32 33 syl2anc φcoe1GL-Rcoe1GL=0R
35 24 25 34 3eqtrd φcoe1F-˙GL=0R
36 1 2 14 3 15 16 6 21 5 35 deg1ldgn φDF-˙GL
37 36 neneqd φ¬DF-˙G=L
38 1 2 3 deg1xrcl F-˙GBDF-˙G*
39 21 38 syl φDF-˙G*
40 1 2 3 deg1xrcl GBDG*
41 9 40 syl φDG*
42 1 2 3 deg1xrcl FBDF*
43 7 42 syl φDF*
44 41 43 ifcld φifDFDGDGDF*
45 5 nn0red φL
46 45 rexrd φL*
47 2 1 6 3 4 7 9 deg1suble φDF-˙GifDFDGDGDF
48 xrmaxle DF*DG*L*ifDFDGDGDFLDFLDGL
49 43 41 46 48 syl3anc φifDFDGDGDFLDFLDGL
50 8 10 49 mpbir2and φifDFDGDGDFL
51 39 44 46 47 50 xrletrd φDF-˙GL
52 xrleloe DF-˙G*L*DF-˙GLDF-˙G<LDF-˙G=L
53 39 46 52 syl2anc φDF-˙GLDF-˙G<LDF-˙G=L
54 51 53 mpbid φDF-˙G<LDF-˙G=L
55 orel2 ¬DF-˙G=LDF-˙G<LDF-˙G=LDF-˙G<L
56 37 54 55 sylc φDF-˙G<L