Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1sublt.d | |
|
deg1sublt.p | |
||
deg1sublt.b | |
||
deg1sublt.m | |
||
deg1sublt.l | |
||
deg1sublt.r | |
||
deg1sublt.fb | |
||
deg1sublt.fd | |
||
deg1sublt.gb | |
||
deg1sublt.gd | |
||
deg1sublt.a | |
||
deg1sublt.c | |
||
deg1sublt.eq | |
||
Assertion | deg1sublt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1sublt.d | |
|
2 | deg1sublt.p | |
|
3 | deg1sublt.b | |
|
4 | deg1sublt.m | |
|
5 | deg1sublt.l | |
|
6 | deg1sublt.r | |
|
7 | deg1sublt.fb | |
|
8 | deg1sublt.fd | |
|
9 | deg1sublt.gb | |
|
10 | deg1sublt.gd | |
|
11 | deg1sublt.a | |
|
12 | deg1sublt.c | |
|
13 | deg1sublt.eq | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 2 | ply1ring | |
18 | ringgrp | |
|
19 | 6 17 18 | 3syl | |
20 | 3 4 | grpsubcl | |
21 | 19 7 9 20 | syl3anc | |
22 | eqid | |
|
23 | 2 3 4 22 | coe1subfv | |
24 | 6 7 9 5 23 | syl31anc | |
25 | 13 | oveq1d | |
26 | ringgrp | |
|
27 | 6 26 | syl | |
28 | eqid | |
|
29 | eqid | |
|
30 | 28 3 2 29 | coe1f | |
31 | 9 30 | syl | |
32 | 31 5 | ffvelcdmd | |
33 | 29 15 22 | grpsubid | |
34 | 27 32 33 | syl2anc | |
35 | 24 25 34 | 3eqtrd | |
36 | 1 2 14 3 15 16 6 21 5 35 | deg1ldgn | |
37 | 36 | neneqd | |
38 | 1 2 3 | deg1xrcl | |
39 | 21 38 | syl | |
40 | 1 2 3 | deg1xrcl | |
41 | 9 40 | syl | |
42 | 1 2 3 | deg1xrcl | |
43 | 7 42 | syl | |
44 | 41 43 | ifcld | |
45 | 5 | nn0red | |
46 | 45 | rexrd | |
47 | 2 1 6 3 4 7 9 | deg1suble | |
48 | xrmaxle | |
|
49 | 43 41 46 48 | syl3anc | |
50 | 8 10 49 | mpbir2and | |
51 | 39 44 46 47 50 | xrletrd | |
52 | xrleloe | |
|
53 | 39 46 52 | syl2anc | |
54 | 51 53 | mpbid | |
55 | orel2 | |
|
56 | 37 54 55 | sylc | |