Step |
Hyp |
Ref |
Expression |
1 |
|
mon1pid.p |
|- P = ( Poly1 ` R ) |
2 |
|
mon1pid.o |
|- .1. = ( 1r ` P ) |
3 |
|
mon1pid.m |
|- M = ( Monic1p ` R ) |
4 |
|
mon1pid.d |
|- D = ( deg1 ` R ) |
5 |
1
|
ply1nz |
|- ( R e. NzRing -> P e. NzRing ) |
6 |
|
nzrring |
|- ( P e. NzRing -> P e. Ring ) |
7 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
8 |
7 2
|
ringidcl |
|- ( P e. Ring -> .1. e. ( Base ` P ) ) |
9 |
5 6 8
|
3syl |
|- ( R e. NzRing -> .1. e. ( Base ` P ) ) |
10 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
11 |
2 10
|
nzrnz |
|- ( P e. NzRing -> .1. =/= ( 0g ` P ) ) |
12 |
5 11
|
syl |
|- ( R e. NzRing -> .1. =/= ( 0g ` P ) ) |
13 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
14 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
15 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
16 |
1 14 15 2
|
ply1scl1 |
|- ( R e. Ring -> ( ( algSc ` P ) ` ( 1r ` R ) ) = .1. ) |
17 |
13 16
|
syl |
|- ( R e. NzRing -> ( ( algSc ` P ) ` ( 1r ` R ) ) = .1. ) |
18 |
17
|
fveq2d |
|- ( R e. NzRing -> ( coe1 ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( coe1 ` .1. ) ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
19 15
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
21 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
22 |
1 14 19 21
|
coe1scl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( coe1 ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
23 |
13 20 22
|
syl2anc2 |
|- ( R e. NzRing -> ( coe1 ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
24 |
18 23
|
eqtr3d |
|- ( R e. NzRing -> ( coe1 ` .1. ) = ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
25 |
17
|
fveq2d |
|- ( R e. NzRing -> ( D ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( D ` .1. ) ) |
26 |
13 20
|
syl |
|- ( R e. NzRing -> ( 1r ` R ) e. ( Base ` R ) ) |
27 |
15 21
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
28 |
4 1 19 14 21
|
deg1scl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( D ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = 0 ) |
29 |
13 26 27 28
|
syl3anc |
|- ( R e. NzRing -> ( D ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = 0 ) |
30 |
25 29
|
eqtr3d |
|- ( R e. NzRing -> ( D ` .1. ) = 0 ) |
31 |
24 30
|
fveq12d |
|- ( R e. NzRing -> ( ( coe1 ` .1. ) ` ( D ` .1. ) ) = ( ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) ` 0 ) ) |
32 |
|
0nn0 |
|- 0 e. NN0 |
33 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) = ( 1r ` R ) ) |
34 |
|
eqid |
|- ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) = ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) |
35 |
|
fvex |
|- ( 1r ` R ) e. _V |
36 |
33 34 35
|
fvmpt |
|- ( 0 e. NN0 -> ( ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) ` 0 ) = ( 1r ` R ) ) |
37 |
32 36
|
ax-mp |
|- ( ( x e. NN0 |-> if ( x = 0 , ( 1r ` R ) , ( 0g ` R ) ) ) ` 0 ) = ( 1r ` R ) |
38 |
31 37
|
eqtrdi |
|- ( R e. NzRing -> ( ( coe1 ` .1. ) ` ( D ` .1. ) ) = ( 1r ` R ) ) |
39 |
1 7 10 4 3 15
|
ismon1p |
|- ( .1. e. M <-> ( .1. e. ( Base ` P ) /\ .1. =/= ( 0g ` P ) /\ ( ( coe1 ` .1. ) ` ( D ` .1. ) ) = ( 1r ` R ) ) ) |
40 |
9 12 38 39
|
syl3anbrc |
|- ( R e. NzRing -> .1. e. M ) |
41 |
40 30
|
jca |
|- ( R e. NzRing -> ( .1. e. M /\ ( D ` .1. ) = 0 ) ) |