| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mon1pid.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | mon1pid.o | ⊢  1   =  ( 1r ‘ 𝑃 ) | 
						
							| 3 |  | mon1pid.m | ⊢ 𝑀  =  ( Monic1p ‘ 𝑅 ) | 
						
							| 4 |  | mon1pid.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 5 | 1 | ply1nz | ⊢ ( 𝑅  ∈  NzRing  →  𝑃  ∈  NzRing ) | 
						
							| 6 |  | nzrring | ⊢ ( 𝑃  ∈  NzRing  →  𝑃  ∈  Ring ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 8 | 7 2 | ringidcl | ⊢ ( 𝑃  ∈  Ring  →   1   ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 9 | 5 6 8 | 3syl | ⊢ ( 𝑅  ∈  NzRing  →   1   ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 11 | 2 10 | nzrnz | ⊢ ( 𝑃  ∈  NzRing  →   1   ≠  ( 0g ‘ 𝑃 ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝑅  ∈  NzRing  →   1   ≠  ( 0g ‘ 𝑃 ) ) | 
						
							| 13 |  | nzrring | ⊢ ( 𝑅  ∈  NzRing  →  𝑅  ∈  Ring ) | 
						
							| 14 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 15 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 16 | 1 14 15 2 | ply1scl1 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  =   1  ) | 
						
							| 17 | 13 16 | syl | ⊢ ( 𝑅  ∈  NzRing  →  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  =   1  ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑅  ∈  NzRing  →  ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  ( coe1 ‘  1  ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 20 | 19 15 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 22 | 1 14 19 21 | coe1scl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  →  ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 23 | 13 20 22 | syl2anc2 | ⊢ ( 𝑅  ∈  NzRing  →  ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 24 | 18 23 | eqtr3d | ⊢ ( 𝑅  ∈  NzRing  →  ( coe1 ‘  1  )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 25 | 17 | fveq2d | ⊢ ( 𝑅  ∈  NzRing  →  ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝐷 ‘  1  ) ) | 
						
							| 26 | 13 20 | syl | ⊢ ( 𝑅  ∈  NzRing  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 15 21 | nzrnz | ⊢ ( 𝑅  ∈  NzRing  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 28 | 4 1 19 14 21 | deg1scl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  →  ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  0 ) | 
						
							| 29 | 13 26 27 28 | syl3anc | ⊢ ( 𝑅  ∈  NzRing  →  ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  0 ) | 
						
							| 30 | 25 29 | eqtr3d | ⊢ ( 𝑅  ∈  NzRing  →  ( 𝐷 ‘  1  )  =  0 ) | 
						
							| 31 | 24 30 | fveq12d | ⊢ ( 𝑅  ∈  NzRing  →  ( ( coe1 ‘  1  ) ‘ ( 𝐷 ‘  1  ) )  =  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) ) | 
						
							| 32 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 33 |  | iftrue | ⊢ ( 𝑥  =  0  →  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 35 |  | fvex | ⊢ ( 1r ‘ 𝑅 )  ∈  V | 
						
							| 36 | 33 34 35 | fvmpt | ⊢ ( 0  ∈  ℕ0  →  ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ‘ 0 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 37 | 32 36 | ax-mp | ⊢ ( ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ‘ 0 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 38 | 31 37 | eqtrdi | ⊢ ( 𝑅  ∈  NzRing  →  ( ( coe1 ‘  1  ) ‘ ( 𝐷 ‘  1  ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 39 | 1 7 10 4 3 15 | ismon1p | ⊢ (  1   ∈  𝑀  ↔  (  1   ∈  ( Base ‘ 𝑃 )  ∧   1   ≠  ( 0g ‘ 𝑃 )  ∧  ( ( coe1 ‘  1  ) ‘ ( 𝐷 ‘  1  ) )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 40 | 9 12 38 39 | syl3anbrc | ⊢ ( 𝑅  ∈  NzRing  →   1   ∈  𝑀 ) | 
						
							| 41 | 40 30 | jca | ⊢ ( 𝑅  ∈  NzRing  →  (  1   ∈  𝑀  ∧  ( 𝐷 ‘  1  )  =  0 ) ) |