Step |
Hyp |
Ref |
Expression |
1 |
|
mon1pid.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
mon1pid.o |
⊢ 1 = ( 1r ‘ 𝑃 ) |
3 |
|
mon1pid.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
4 |
|
mon1pid.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
5 |
1
|
ply1nz |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ NzRing ) |
6 |
|
nzrring |
⊢ ( 𝑃 ∈ NzRing → 𝑃 ∈ Ring ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
8 |
7 2
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → 1 ∈ ( Base ‘ 𝑃 ) ) |
9 |
5 6 8
|
3syl |
⊢ ( 𝑅 ∈ NzRing → 1 ∈ ( Base ‘ 𝑃 ) ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
11 |
2 10
|
nzrnz |
⊢ ( 𝑃 ∈ NzRing → 1 ≠ ( 0g ‘ 𝑃 ) ) |
12 |
5 11
|
syl |
⊢ ( 𝑅 ∈ NzRing → 1 ≠ ( 0g ‘ 𝑃 ) ) |
13 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
14 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
15 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
16 |
1 14 15 2
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
17 |
13 16
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
18 |
17
|
fveq2d |
⊢ ( 𝑅 ∈ NzRing → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( coe1 ‘ 1 ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
20 |
19 15
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
22 |
1 14 19 21
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
23 |
13 20 22
|
syl2anc2 |
⊢ ( 𝑅 ∈ NzRing → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
24 |
18 23
|
eqtr3d |
⊢ ( 𝑅 ∈ NzRing → ( coe1 ‘ 1 ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
25 |
17
|
fveq2d |
⊢ ( 𝑅 ∈ NzRing → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐷 ‘ 1 ) ) |
26 |
13 20
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
27 |
15 21
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
28 |
4 1 19 14 21
|
deg1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
29 |
13 26 27 28
|
syl3anc |
⊢ ( 𝑅 ∈ NzRing → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
30 |
25 29
|
eqtr3d |
⊢ ( 𝑅 ∈ NzRing → ( 𝐷 ‘ 1 ) = 0 ) |
31 |
24 30
|
fveq12d |
⊢ ( 𝑅 ∈ NzRing → ( ( coe1 ‘ 1 ) ‘ ( 𝐷 ‘ 1 ) ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) ) |
32 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
33 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
34 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
35 |
|
fvex |
⊢ ( 1r ‘ 𝑅 ) ∈ V |
36 |
33 34 35
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = ( 1r ‘ 𝑅 ) ) |
37 |
32 36
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = ( 1r ‘ 𝑅 ) |
38 |
31 37
|
eqtrdi |
⊢ ( 𝑅 ∈ NzRing → ( ( coe1 ‘ 1 ) ‘ ( 𝐷 ‘ 1 ) ) = ( 1r ‘ 𝑅 ) ) |
39 |
1 7 10 4 3 15
|
ismon1p |
⊢ ( 1 ∈ 𝑀 ↔ ( 1 ∈ ( Base ‘ 𝑃 ) ∧ 1 ≠ ( 0g ‘ 𝑃 ) ∧ ( ( coe1 ‘ 1 ) ‘ ( 𝐷 ‘ 1 ) ) = ( 1r ‘ 𝑅 ) ) ) |
40 |
9 12 38 39
|
syl3anbrc |
⊢ ( 𝑅 ∈ NzRing → 1 ∈ 𝑀 ) |
41 |
40 30
|
jca |
⊢ ( 𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ ( 𝐷 ‘ 1 ) = 0 ) ) |