| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mon1psubm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
mon1psubm.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
| 3 |
|
mon1psubm.u |
⊢ 𝑈 = ( mulGrp ‘ 𝑃 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 5 |
1 4 2
|
mon1pcl |
⊢ ( 𝑥 ∈ 𝑀 → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
| 6 |
5
|
ssriv |
⊢ 𝑀 ⊆ ( Base ‘ 𝑃 ) |
| 7 |
6
|
a1i |
⊢ ( 𝑅 ∈ NzRing → 𝑀 ⊆ ( Base ‘ 𝑃 ) ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 9 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 10 |
1 8 2 9
|
mon1pid |
⊢ ( 𝑅 ∈ NzRing → ( ( 1r ‘ 𝑃 ) ∈ 𝑀 ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑃 ) ) = 0 ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑃 ) ∈ 𝑀 ) |
| 12 |
1
|
ply1nz |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ NzRing ) |
| 13 |
|
nzrring |
⊢ ( 𝑃 ∈ NzRing → 𝑃 ∈ Ring ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ Ring ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → 𝑃 ∈ Ring ) |
| 16 |
5
|
ad2antrl |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
| 17 |
|
simprr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → 𝑦 ∈ 𝑀 ) |
| 18 |
6 17
|
sselid |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → 𝑦 ∈ ( Base ‘ 𝑃 ) ) |
| 19 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 20 |
4 19
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) |
| 21 |
15 16 18 20
|
syl3anc |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) |
| 22 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 24 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → 𝑅 ∈ Ring ) |
| 26 |
1 23 2
|
mon1pn0 |
⊢ ( 𝑥 ∈ 𝑀 → 𝑥 ≠ ( 0g ‘ 𝑃 ) ) |
| 27 |
26
|
ad2antrl |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → 𝑥 ≠ ( 0g ‘ 𝑃 ) ) |
| 28 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 29 |
9 28 2
|
mon1pldg |
⊢ ( 𝑥 ∈ 𝑀 → ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑅 ) ) |
| 30 |
29
|
ad2antrl |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑅 ) ) |
| 31 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 32 |
22 31
|
unitrrg |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 33 |
24 32
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 34 |
31 28
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 35 |
24 34
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 36 |
33 35
|
sseldd |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( 1r ‘ 𝑅 ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 38 |
30 37
|
eqeltrd |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 39 |
1 23 2
|
mon1pn0 |
⊢ ( 𝑦 ∈ 𝑀 → 𝑦 ≠ ( 0g ‘ 𝑃 ) ) |
| 40 |
39
|
ad2antll |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → 𝑦 ≠ ( 0g ‘ 𝑃 ) ) |
| 41 |
9 1 22 4 19 23 25 16 27 38 18 40
|
deg1mul2 |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) + ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 42 |
9 1 23 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑃 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 43 |
25 16 27 42
|
syl3anc |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 44 |
9 1 23 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑃 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ℕ0 ) |
| 45 |
25 18 40 44
|
syl3anc |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ℕ0 ) |
| 46 |
43 45
|
nn0addcld |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) + ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ∈ ℕ0 ) |
| 47 |
41 46
|
eqeltrd |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ ℕ0 ) |
| 48 |
9 1 23 4
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ ℕ0 ) ) |
| 49 |
25 21 48
|
syl2anc |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ ℕ0 ) ) |
| 50 |
47 49
|
mpbird |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ) |
| 51 |
41
|
fveq2d |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( coe1 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) = ( ( coe1 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ‘ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) + ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
| 52 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 53 |
1 19 52 4 9 23 25 16 27 18 40
|
coe1mul4 |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( coe1 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ‘ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) + ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) = ( ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑦 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
| 54 |
9 28 2
|
mon1pldg |
⊢ ( 𝑦 ∈ 𝑀 → ( ( coe1 ‘ 𝑦 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) = ( 1r ‘ 𝑅 ) ) |
| 55 |
54
|
ad2antll |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( coe1 ‘ 𝑦 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) = ( 1r ‘ 𝑅 ) ) |
| 56 |
30 55
|
oveq12d |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑦 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 57 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 58 |
57 28
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 |
57 52 28
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 60 |
24 58 59
|
syl2anc2 |
⊢ ( 𝑅 ∈ NzRing → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 62 |
56 61
|
eqtrd |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( ( coe1 ‘ 𝑥 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝑦 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 63 |
53 62
|
eqtrd |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( coe1 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ‘ ( ( ( deg1 ‘ 𝑅 ) ‘ 𝑥 ) + ( ( deg1 ‘ 𝑅 ) ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 64 |
51 63
|
eqtrd |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( ( coe1 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 65 |
1 4 23 9 2 28
|
ismon1p |
⊢ ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝑀 ↔ ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ ( 0g ‘ 𝑃 ) ∧ ( ( coe1 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 66 |
21 50 64 65
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝑀 ) |
| 67 |
66
|
ralrimivva |
⊢ ( 𝑅 ∈ NzRing → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝑀 ) |
| 68 |
3
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑈 ∈ Mnd ) |
| 69 |
14 68
|
syl |
⊢ ( 𝑅 ∈ NzRing → 𝑈 ∈ Mnd ) |
| 70 |
3 4
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑈 ) |
| 71 |
3 8
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑈 ) |
| 72 |
3 19
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑈 ) |
| 73 |
70 71 72
|
issubm |
⊢ ( 𝑈 ∈ Mnd → ( 𝑀 ∈ ( SubMnd ‘ 𝑈 ) ↔ ( 𝑀 ⊆ ( Base ‘ 𝑃 ) ∧ ( 1r ‘ 𝑃 ) ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝑀 ) ) ) |
| 74 |
69 73
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( 𝑀 ∈ ( SubMnd ‘ 𝑈 ) ↔ ( 𝑀 ⊆ ( Base ‘ 𝑃 ) ∧ ( 1r ‘ 𝑃 ) ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝑀 ) ) ) |
| 75 |
7 11 67 74
|
mpbir3and |
⊢ ( 𝑅 ∈ NzRing → 𝑀 ∈ ( SubMnd ‘ 𝑈 ) ) |