| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1domn.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 3 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ Ring ) |
| 5 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 8 |
1 5 6 7
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
| 9 |
2 8
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
| 10 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 11 |
6 10
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 |
2 11
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 |
9 12
|
ffvelcdmd |
⊢ ( 𝑅 ∈ NzRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 14 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 15 |
10 14
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 17 |
1 5 14 16 6
|
ply1scln0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ≠ ( 0g ‘ 𝑃 ) ) |
| 18 |
2 12 15 17
|
syl3anc |
⊢ ( 𝑅 ∈ NzRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ≠ ( 0g ‘ 𝑃 ) ) |
| 19 |
|
eldifsn |
⊢ ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g ‘ 𝑃 ) } ) ↔ ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ≠ ( 0g ‘ 𝑃 ) ) ) |
| 20 |
13 18 19
|
sylanbrc |
⊢ ( 𝑅 ∈ NzRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g ‘ 𝑃 ) } ) ) |
| 21 |
16 7
|
ringelnzr |
⊢ ( ( 𝑃 ∈ Ring ∧ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g ‘ 𝑃 ) } ) ) → 𝑃 ∈ NzRing ) |
| 22 |
4 20 21
|
syl2anc |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ NzRing ) |