Description: A scalar polynomial is a polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
coe1scl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
ply1sclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
Assertion | ply1sclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
3 | coe1scl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
4 | ply1sclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
5 | 1 | ply1sca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
6 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
7 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
8 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
9 | 8 3 | strfvi | ⊢ 𝐾 = ( Base ‘ ( I ‘ 𝑅 ) ) |
10 | 2 5 6 7 9 4 | asclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) |