Metamath Proof Explorer


Theorem ply1sclf

Description: A scalar polynomial is a polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
coe1scl.k K = Base R
ply1sclf.b B = Base P
Assertion ply1sclf R Ring A : K B

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 coe1scl.k K = Base R
4 ply1sclf.b B = Base P
5 1 ply1sca2 I R = Scalar P
6 1 ply1ring R Ring P Ring
7 1 ply1lmod R Ring P LMod
8 baseid Base = Slot Base ndx
9 8 3 strfvi K = Base I R
10 2 5 6 7 9 4 asclf R Ring A : K B