Metamath Proof Explorer


Theorem ply1nz

Description: Univariate polynomials over a nonzero ring are a nonzero ring. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis ply1domn.p P=Poly1R
Assertion ply1nz RNzRingPNzRing

Proof

Step Hyp Ref Expression
1 ply1domn.p P=Poly1R
2 nzrring RNzRingRRing
3 1 ply1ring RRingPRing
4 2 3 syl RNzRingPRing
5 eqid algScP=algScP
6 eqid BaseR=BaseR
7 eqid BaseP=BaseP
8 1 5 6 7 ply1sclf RRingalgScP:BaseRBaseP
9 2 8 syl RNzRingalgScP:BaseRBaseP
10 eqid 1R=1R
11 6 10 ringidcl RRing1RBaseR
12 2 11 syl RNzRing1RBaseR
13 9 12 ffvelcdmd RNzRingalgScP1RBaseP
14 eqid 0R=0R
15 10 14 nzrnz RNzRing1R0R
16 eqid 0P=0P
17 1 5 14 16 6 ply1scln0 RRing1RBaseR1R0RalgScP1R0P
18 2 12 15 17 syl3anc RNzRingalgScP1R0P
19 eldifsn algScP1RBaseP0PalgScP1RBasePalgScP1R0P
20 13 18 19 sylanbrc RNzRingalgScP1RBaseP0P
21 16 7 ringelnzr PRingalgScP1RBaseP0PPNzRing
22 4 20 21 syl2anc RNzRingPNzRing