| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1domn.p |  | 
						
							| 2 | 1 | ply1nz |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 4 5 | nzrnz |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | ifeq1 |  | 
						
							| 9 |  | ifid |  | 
						
							| 10 | 8 9 | eqtrdi |  | 
						
							| 11 | 10 | ralrimivw |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 12 1 4 | ply1mpl1 |  | 
						
							| 17 |  | 1on |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 | 12 13 14 15 16 18 3 | mpl1 |  | 
						
							| 20 | 12 1 5 | ply1mpl0 |  | 
						
							| 21 |  | ringgrp |  | 
						
							| 22 | 3 21 | syl |  | 
						
							| 23 | 12 13 14 20 18 22 | mpl0 |  | 
						
							| 24 |  | fconstmpt |  | 
						
							| 25 | 23 24 | eqtrdi |  | 
						
							| 26 | 19 25 | eqeq12d |  | 
						
							| 27 |  | fvex |  | 
						
							| 28 |  | fvex |  | 
						
							| 29 | 27 28 | ifex |  | 
						
							| 30 | 29 | rgenw |  | 
						
							| 31 |  | mpteqb |  | 
						
							| 32 | 30 31 | ax-mp |  | 
						
							| 33 | 26 32 | bitrdi |  | 
						
							| 34 | 11 33 | imbitrrid |  | 
						
							| 35 | 34 | necon3d |  | 
						
							| 36 | 7 35 | mpd |  | 
						
							| 37 | 15 14 | isnzr |  | 
						
							| 38 | 3 36 37 | sylanbrc |  | 
						
							| 39 | 38 | ex |  | 
						
							| 40 | 2 39 | impbid2 |  |