Metamath Proof Explorer


Theorem ply1nzb

Description: Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015)

Ref Expression
Hypothesis ply1domn.p P = Poly 1 R
Assertion ply1nzb R Ring R NzRing P NzRing

Proof

Step Hyp Ref Expression
1 ply1domn.p P = Poly 1 R
2 1 ply1nz R NzRing P NzRing
3 simpl R Ring P NzRing R Ring
4 eqid 1 P = 1 P
5 eqid 0 P = 0 P
6 4 5 nzrnz P NzRing 1 P 0 P
7 6 adantl R Ring P NzRing 1 P 0 P
8 ifeq1 1 R = 0 R if y = 1 𝑜 × 0 1 R 0 R = if y = 1 𝑜 × 0 0 R 0 R
9 ifid if y = 1 𝑜 × 0 0 R 0 R = 0 R
10 8 9 eqtrdi 1 R = 0 R if y = 1 𝑜 × 0 1 R 0 R = 0 R
11 10 ralrimivw 1 R = 0 R y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R = 0 R
12 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
13 eqid x 0 1 𝑜 | x -1 Fin = x 0 1 𝑜 | x -1 Fin
14 eqid 0 R = 0 R
15 eqid 1 R = 1 R
16 12 1 4 ply1mpl1 1 P = 1 1 𝑜 mPoly R
17 1on 1 𝑜 On
18 17 a1i R Ring P NzRing 1 𝑜 On
19 12 13 14 15 16 18 3 mpl1 R Ring P NzRing 1 P = y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R
20 12 1 5 ply1mpl0 0 P = 0 1 𝑜 mPoly R
21 ringgrp R Ring R Grp
22 3 21 syl R Ring P NzRing R Grp
23 12 13 14 20 18 22 mpl0 R Ring P NzRing 0 P = x 0 1 𝑜 | x -1 Fin × 0 R
24 fconstmpt x 0 1 𝑜 | x -1 Fin × 0 R = y x 0 1 𝑜 | x -1 Fin 0 R
25 23 24 eqtrdi R Ring P NzRing 0 P = y x 0 1 𝑜 | x -1 Fin 0 R
26 19 25 eqeq12d R Ring P NzRing 1 P = 0 P y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R = y x 0 1 𝑜 | x -1 Fin 0 R
27 fvex 1 R V
28 fvex 0 R V
29 27 28 ifex if y = 1 𝑜 × 0 1 R 0 R V
30 29 rgenw y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R V
31 mpteqb y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R V y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R = y x 0 1 𝑜 | x -1 Fin 0 R y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R = 0 R
32 30 31 ax-mp y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R = y x 0 1 𝑜 | x -1 Fin 0 R y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R = 0 R
33 26 32 bitrdi R Ring P NzRing 1 P = 0 P y x 0 1 𝑜 | x -1 Fin if y = 1 𝑜 × 0 1 R 0 R = 0 R
34 11 33 syl5ibr R Ring P NzRing 1 R = 0 R 1 P = 0 P
35 34 necon3d R Ring P NzRing 1 P 0 P 1 R 0 R
36 7 35 mpd R Ring P NzRing 1 R 0 R
37 15 14 isnzr R NzRing R Ring 1 R 0 R
38 3 36 37 sylanbrc R Ring P NzRing R NzRing
39 38 ex R Ring P NzRing R NzRing
40 2 39 impbid2 R Ring R NzRing P NzRing