Metamath Proof Explorer


Theorem ply1domn

Description: Corollary of deg1mul2 : the univariate polynomials over a domain are a domain. This is true for multivariate but with a much more complicated proof. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypothesis ply1domn.p P=Poly1R
Assertion ply1domn RDomnPDomn

Proof

Step Hyp Ref Expression
1 ply1domn.p P=Poly1R
2 domnnzr RDomnRNzRing
3 1 ply1nz RNzRingPNzRing
4 2 3 syl RDomnPNzRing
5 neanior x0Py0P¬x=0Py=0P
6 eqid deg1R=deg1R
7 eqid RLRegR=RLRegR
8 eqid BaseP=BaseP
9 eqid P=P
10 eqid 0P=0P
11 domnring RDomnRRing
12 11 ad2antrr RDomnxBasePyBasePx0Py0PRRing
13 simplrl RDomnxBasePyBasePx0Py0PxBaseP
14 simprl RDomnxBasePyBasePx0Py0Px0P
15 simpll RDomnxBasePyBasePx0Py0PRDomn
16 eqid coe1x=coe1x
17 6 1 10 8 7 16 deg1ldgdomn RDomnxBasePx0Pcoe1xdeg1RxRLRegR
18 15 13 14 17 syl3anc RDomnxBasePyBasePx0Py0Pcoe1xdeg1RxRLRegR
19 simplrr RDomnxBasePyBasePx0Py0PyBaseP
20 simprr RDomnxBasePyBasePx0Py0Py0P
21 6 1 7 8 9 10 12 13 14 18 19 20 deg1mul2 RDomnxBasePyBasePx0Py0Pdeg1RxPy=deg1Rx+deg1Ry
22 6 1 10 8 deg1nn0cl RRingxBasePx0Pdeg1Rx0
23 12 13 14 22 syl3anc RDomnxBasePyBasePx0Py0Pdeg1Rx0
24 6 1 10 8 deg1nn0cl RRingyBasePy0Pdeg1Ry0
25 12 19 20 24 syl3anc RDomnxBasePyBasePx0Py0Pdeg1Ry0
26 23 25 nn0addcld RDomnxBasePyBasePx0Py0Pdeg1Rx+deg1Ry0
27 21 26 eqeltrd RDomnxBasePyBasePx0Py0Pdeg1RxPy0
28 1 ply1ring RRingPRing
29 11 28 syl RDomnPRing
30 29 ad2antrr RDomnxBasePyBasePx0Py0PPRing
31 8 9 ringcl PRingxBasePyBasePxPyBaseP
32 30 13 19 31 syl3anc RDomnxBasePyBasePx0Py0PxPyBaseP
33 6 1 10 8 deg1nn0clb RRingxPyBasePxPy0Pdeg1RxPy0
34 12 32 33 syl2anc RDomnxBasePyBasePx0Py0PxPy0Pdeg1RxPy0
35 27 34 mpbird RDomnxBasePyBasePx0Py0PxPy0P
36 35 ex RDomnxBasePyBasePx0Py0PxPy0P
37 5 36 biimtrrid RDomnxBasePyBaseP¬x=0Py=0PxPy0P
38 37 necon4bd RDomnxBasePyBasePxPy=0Px=0Py=0P
39 38 ralrimivva RDomnxBasePyBasePxPy=0Px=0Py=0P
40 8 9 10 isdomn PDomnPNzRingxBasePyBasePxPy=0Px=0Py=0P
41 4 39 40 sylanbrc RDomnPDomn