Description: Corollary of deg1mul2 : the univariate polynomials over a domain are a domain. This is true for multivariate but with a much more complicated proof. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ply1domn.p | |
|
Assertion | ply1domn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1domn.p | |
|
2 | domnnzr | |
|
3 | 1 | ply1nz | |
4 | 2 3 | syl | |
5 | neanior | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | domnring | |
|
12 | 11 | ad2antrr | |
13 | simplrl | |
|
14 | simprl | |
|
15 | simpll | |
|
16 | eqid | |
|
17 | 6 1 10 8 7 16 | deg1ldgdomn | |
18 | 15 13 14 17 | syl3anc | |
19 | simplrr | |
|
20 | simprr | |
|
21 | 6 1 7 8 9 10 12 13 14 18 19 20 | deg1mul2 | |
22 | 6 1 10 8 | deg1nn0cl | |
23 | 12 13 14 22 | syl3anc | |
24 | 6 1 10 8 | deg1nn0cl | |
25 | 12 19 20 24 | syl3anc | |
26 | 23 25 | nn0addcld | |
27 | 21 26 | eqeltrd | |
28 | 1 | ply1ring | |
29 | 11 28 | syl | |
30 | 29 | ad2antrr | |
31 | 8 9 | ringcl | |
32 | 30 13 19 31 | syl3anc | |
33 | 6 1 10 8 | deg1nn0clb | |
34 | 12 32 33 | syl2anc | |
35 | 27 34 | mpbird | |
36 | 35 | ex | |
37 | 5 36 | biimtrrid | |
38 | 37 | necon4bd | |
39 | 38 | ralrimivva | |
40 | 8 9 10 | isdomn | |
41 | 4 39 40 | sylanbrc | |