Metamath Proof Explorer


Theorem ringelnzr

Description: A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 13-Jun-2015)

Ref Expression
Hypotheses ringelnzr.z 0˙=0R
ringelnzr.b B=BaseR
Assertion ringelnzr RRingXB0˙RNzRing

Proof

Step Hyp Ref Expression
1 ringelnzr.z 0˙=0R
2 ringelnzr.b B=BaseR
3 simpl RRingXB0˙RRing
4 eldifsni XB0˙X0˙
5 4 adantl RRingXB0˙X0˙
6 eldifi XB0˙XB
7 6 adantl RRingXB0˙XB
8 2 1 ring0cl RRing0˙B
9 8 adantr RRingXB0˙0˙B
10 eqid 1R=1R
11 2 10 1 ring1eq0 RRingXB0˙B1R=0˙X=0˙
12 3 7 9 11 syl3anc RRingXB0˙1R=0˙X=0˙
13 12 necon3d RRingXB0˙X0˙1R0˙
14 5 13 mpd RRingXB0˙1R0˙
15 10 1 isnzr RNzRingRRing1R0˙
16 3 14 15 sylanbrc RRingXB0˙RNzRing