Metamath Proof Explorer


Theorem ply1scln0

Description: Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P=Poly1R
ply1scl.a A=algScP
ply1scl0.z 0˙=0R
ply1scl0.y Y=0P
ply1scln0.k K=BaseR
Assertion ply1scln0 RRingXKX0˙AXY

Proof

Step Hyp Ref Expression
1 ply1scl.p P=Poly1R
2 ply1scl.a A=algScP
3 ply1scl0.z 0˙=0R
4 ply1scl0.y Y=0P
5 ply1scln0.k K=BaseR
6 eqid BaseP=BaseP
7 1 2 5 6 ply1sclf1 RRingA:K1-1BaseP
8 7 adantr RRingXKA:K1-1BaseP
9 simpr RRingXKXK
10 5 3 ring0cl RRing0˙K
11 10 adantr RRingXK0˙K
12 f1fveq A:K1-1BasePXK0˙KAX=A0˙X=0˙
13 8 9 11 12 syl12anc RRingXKAX=A0˙X=0˙
14 13 biimpd RRingXKAX=A0˙X=0˙
15 14 necon3d RRingXKX0˙AXA0˙
16 15 3impia RRingXKX0˙AXA0˙
17 1 2 3 4 ply1scl0 RRingA0˙=Y
18 17 3ad2ant1 RRingXKX0˙A0˙=Y
19 16 18 neeqtrd RRingXKX0˙AXY