Metamath Proof Explorer


Theorem ply1scl1

Description: The one scalar is the unit polynomial. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
ply1scl1.o 1 ˙ = 1 R
ply1scl1.n N = 1 P
Assertion ply1scl1 R Ring A 1 ˙ = N

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 ply1scl1.o 1 ˙ = 1 R
4 ply1scl1.n N = 1 P
5 eqid Base R = Base R
6 5 3 ringidcl R Ring 1 ˙ Base R
7 1 ply1sca2 I R = Scalar P
8 baseid Base = Slot Base ndx
9 8 5 strfvi Base R = Base I R
10 eqid P = P
11 2 7 9 10 4 asclval 1 ˙ Base R A 1 ˙ = 1 ˙ P N
12 6 11 syl R Ring A 1 ˙ = 1 ˙ P N
13 fvi R Ring I R = R
14 13 fveq2d R Ring 1 I R = 1 R
15 14 3 eqtr4di R Ring 1 I R = 1 ˙
16 15 oveq1d R Ring 1 I R P N = 1 ˙ P N
17 1 ply1lmod R Ring P LMod
18 1 ply1ring R Ring P Ring
19 eqid Base P = Base P
20 19 4 ringidcl P Ring N Base P
21 18 20 syl R Ring N Base P
22 eqid 1 I R = 1 I R
23 19 7 10 22 lmodvs1 P LMod N Base P 1 I R P N = N
24 17 21 23 syl2anc R Ring 1 I R P N = N
25 12 16 24 3eqtr2d R Ring A 1 ˙ = N