| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1mhm.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1mhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | deg1mhm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | deg1mhm.z | ⊢  0   =  ( 0g ‘ 𝑃 ) | 
						
							| 5 |  | deg1mhm.y | ⊢ 𝑌  =  ( ( mulGrp ‘ 𝑃 )  ↾s  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 6 |  | deg1mhm.n | ⊢ 𝑁  =  ( ℂfld  ↾s  ℕ0 ) | 
						
							| 7 | 3 | ply1domn | ⊢ ( 𝑅  ∈  Domn  →  𝑃  ∈  Domn ) | 
						
							| 8 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 9 | 2 4 8 | isdomn3 | ⊢ ( 𝑃  ∈  Domn  ↔  ( 𝑃  ∈  Ring  ∧  ( 𝐵  ∖  {  0  } )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) ) | 
						
							| 10 | 9 | simprbi | ⊢ ( 𝑃  ∈  Domn  →  ( 𝐵  ∖  {  0  } )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝑅  ∈  Domn  →  ( 𝐵  ∖  {  0  } )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) | 
						
							| 12 | 5 | submmnd | ⊢ ( ( 𝐵  ∖  {  0  } )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) )  →  𝑌  ∈  Mnd ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑅  ∈  Domn  →  𝑌  ∈  Mnd ) | 
						
							| 14 |  | nn0subm | ⊢ ℕ0  ∈  ( SubMnd ‘ ℂfld ) | 
						
							| 15 | 6 | submmnd | ⊢ ( ℕ0  ∈  ( SubMnd ‘ ℂfld )  →  𝑁  ∈  Mnd ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝑅  ∈  Domn  →  𝑁  ∈  Mnd ) | 
						
							| 17 | 13 16 | jca | ⊢ ( 𝑅  ∈  Domn  →  ( 𝑌  ∈  Mnd  ∧  𝑁  ∈  Mnd ) ) | 
						
							| 18 | 1 3 2 | deg1xrf | ⊢ 𝐷 : 𝐵 ⟶ ℝ* | 
						
							| 19 |  | ffn | ⊢ ( 𝐷 : 𝐵 ⟶ ℝ*  →  𝐷  Fn  𝐵 ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ 𝐷  Fn  𝐵 | 
						
							| 21 |  | difss | ⊢ ( 𝐵  ∖  {  0  } )  ⊆  𝐵 | 
						
							| 22 |  | fnssres | ⊢ ( ( 𝐷  Fn  𝐵  ∧  ( 𝐵  ∖  {  0  } )  ⊆  𝐵 )  →  ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) )  Fn  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 23 | 20 21 22 | mp2an | ⊢ ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) )  Fn  ( 𝐵  ∖  {  0  } ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑅  ∈  Domn  →  ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) )  Fn  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 25 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑥 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑥  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑥 ) ) | 
						
							| 27 |  | domnring | ⊢ ( 𝑅  ∈  Domn  →  𝑅  ∈  Ring ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑥  ∈  ( 𝐵  ∖  {  0  } ) )  →  𝑅  ∈  Ring ) | 
						
							| 29 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  →  𝑥  ∈  𝐵 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑥  ∈  ( 𝐵  ∖  {  0  } ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 31 |  | eldifsni | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  →  𝑥  ≠   0  ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑥  ∈  ( 𝐵  ∖  {  0  } ) )  →  𝑥  ≠   0  ) | 
						
							| 33 | 1 3 4 2 | deg1nn0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑥  ≠   0  )  →  ( 𝐷 ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 34 | 28 30 32 33 | syl3anc | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑥  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝐷 ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 35 | 26 34 | eqeltrd | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑥  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 36 | 35 | ralrimiva | ⊢ ( 𝑅  ∈  Domn  →  ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 37 |  | ffnfv | ⊢ ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) : ( 𝐵  ∖  {  0  } ) ⟶ ℕ0  ↔  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) )  Fn  ( 𝐵  ∖  {  0  } )  ∧  ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  ∈  ℕ0 ) ) | 
						
							| 38 | 24 36 37 | sylanbrc | ⊢ ( 𝑅  ∈  Domn  →  ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) : ( 𝐵  ∖  {  0  } ) ⟶ ℕ0 ) | 
						
							| 39 |  | eqid | ⊢ ( RLReg ‘ 𝑅 )  =  ( RLReg ‘ 𝑅 ) | 
						
							| 40 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 41 | 27 | adantr | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 42 | 29 | ad2antrl | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 43 | 31 | ad2antrl | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑥  ≠   0  ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑅  ∈  Domn ) | 
						
							| 45 |  | eqid | ⊢ ( coe1 ‘ 𝑥 )  =  ( coe1 ‘ 𝑥 ) | 
						
							| 46 | 1 3 4 2 39 45 | deg1ldgdomn | ⊢ ( ( 𝑅  ∈  Domn  ∧  𝑥  ∈  𝐵  ∧  𝑥  ≠   0  )  →  ( ( coe1 ‘ 𝑥 ) ‘ ( 𝐷 ‘ 𝑥 ) )  ∈  ( RLReg ‘ 𝑅 ) ) | 
						
							| 47 | 44 42 43 46 | syl3anc | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( ( coe1 ‘ 𝑥 ) ‘ ( 𝐷 ‘ 𝑥 ) )  ∈  ( RLReg ‘ 𝑅 ) ) | 
						
							| 48 |  | eldifi | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  {  0  } )  →  𝑦  ∈  𝐵 ) | 
						
							| 49 | 48 | ad2antll | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 50 |  | eldifsni | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  {  0  } )  →  𝑦  ≠   0  ) | 
						
							| 51 | 50 | ad2antll | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑦  ≠   0  ) | 
						
							| 52 | 1 3 39 2 40 4 41 42 43 47 49 51 | deg1mul2 | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( 𝐷 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐷 ‘ 𝑥 )  +  ( 𝐷 ‘ 𝑦 ) ) ) | 
						
							| 53 |  | domnring | ⊢ ( 𝑃  ∈  Domn  →  𝑃  ∈  Ring ) | 
						
							| 54 | 7 53 | syl | ⊢ ( 𝑅  ∈  Domn  →  𝑃  ∈  Ring ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑃  ∈  Ring ) | 
						
							| 56 | 2 40 | ringcl | ⊢ ( ( 𝑃  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 57 | 55 42 49 56 | syl3anc | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 58 | 7 | adantr | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  𝑃  ∈  Domn ) | 
						
							| 59 | 2 40 4 | domnmuln0 | ⊢ ( ( 𝑃  ∈  Domn  ∧  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠   0  )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑦  ≠   0  ) )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ≠   0  ) | 
						
							| 60 | 58 42 43 49 51 59 | syl122anc | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ≠   0  ) | 
						
							| 61 |  | eldifsn | ⊢ ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ∈  𝐵  ∧  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ≠   0  ) ) | 
						
							| 62 | 57 60 61 | sylanbrc | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 63 |  | fvres | ⊢ ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ∈  ( 𝐵  ∖  {  0  } )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( 𝐷 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( 𝐷 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) | 
						
							| 65 |  | fvres | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  {  0  } )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑦 )  =  ( 𝐷 ‘ 𝑦 ) ) | 
						
							| 66 | 25 65 | oveqan12d | ⊢ ( ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  +  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑦 ) )  =  ( ( 𝐷 ‘ 𝑥 )  +  ( 𝐷 ‘ 𝑦 ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  +  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑦 ) )  =  ( ( 𝐷 ‘ 𝑥 )  +  ( 𝐷 ‘ 𝑦 ) ) ) | 
						
							| 68 | 52 64 67 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑦  ∈  ( 𝐵  ∖  {  0  } ) ) )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  +  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑦 ) ) ) | 
						
							| 69 | 68 | ralrimivva | ⊢ ( 𝑅  ∈  Domn  →  ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  +  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑦 ) ) ) | 
						
							| 70 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 71 | 2 70 | ringidcl | ⊢ ( 𝑃  ∈  Ring  →  ( 1r ‘ 𝑃 )  ∈  𝐵 ) | 
						
							| 72 | 54 71 | syl | ⊢ ( 𝑅  ∈  Domn  →  ( 1r ‘ 𝑃 )  ∈  𝐵 ) | 
						
							| 73 |  | domnnzr | ⊢ ( 𝑃  ∈  Domn  →  𝑃  ∈  NzRing ) | 
						
							| 74 | 70 4 | nzrnz | ⊢ ( 𝑃  ∈  NzRing  →  ( 1r ‘ 𝑃 )  ≠   0  ) | 
						
							| 75 | 7 73 74 | 3syl | ⊢ ( 𝑅  ∈  Domn  →  ( 1r ‘ 𝑃 )  ≠   0  ) | 
						
							| 76 |  | eldifsn | ⊢ ( ( 1r ‘ 𝑃 )  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( ( 1r ‘ 𝑃 )  ∈  𝐵  ∧  ( 1r ‘ 𝑃 )  ≠   0  ) ) | 
						
							| 77 | 72 75 76 | sylanbrc | ⊢ ( 𝑅  ∈  Domn  →  ( 1r ‘ 𝑃 )  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 78 |  | fvres | ⊢ ( ( 1r ‘ 𝑃 )  ∈  ( 𝐵  ∖  {  0  } )  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 1r ‘ 𝑃 ) )  =  ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) ) | 
						
							| 79 | 77 78 | syl | ⊢ ( 𝑅  ∈  Domn  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 1r ‘ 𝑃 ) )  =  ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) ) | 
						
							| 80 | 8 70 | ringidval | ⊢ ( 1r ‘ 𝑃 )  =  ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 81 | 5 80 | subm0 | ⊢ ( ( 𝐵  ∖  {  0  } )  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) )  →  ( 1r ‘ 𝑃 )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 82 | 11 81 | syl | ⊢ ( 𝑅  ∈  Domn  →  ( 1r ‘ 𝑃 )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( 𝑅  ∈  Domn  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 1r ‘ 𝑃 ) )  =  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 0g ‘ 𝑌 ) ) ) | 
						
							| 84 |  | domnnzr | ⊢ ( 𝑅  ∈  Domn  →  𝑅  ∈  NzRing ) | 
						
							| 85 |  | eqid | ⊢ ( Monic1p ‘ 𝑅 )  =  ( Monic1p ‘ 𝑅 ) | 
						
							| 86 | 3 70 85 1 | mon1pid | ⊢ ( 𝑅  ∈  NzRing  →  ( ( 1r ‘ 𝑃 )  ∈  ( Monic1p ‘ 𝑅 )  ∧  ( 𝐷 ‘ ( 1r ‘ 𝑃 ) )  =  0 ) ) | 
						
							| 87 | 86 | simprd | ⊢ ( 𝑅  ∈  NzRing  →  ( 𝐷 ‘ ( 1r ‘ 𝑃 ) )  =  0 ) | 
						
							| 88 | 84 87 | syl | ⊢ ( 𝑅  ∈  Domn  →  ( 𝐷 ‘ ( 1r ‘ 𝑃 ) )  =  0 ) | 
						
							| 89 | 79 83 88 | 3eqtr3d | ⊢ ( 𝑅  ∈  Domn  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 0g ‘ 𝑌 ) )  =  0 ) | 
						
							| 90 | 38 69 89 | 3jca | ⊢ ( 𝑅  ∈  Domn  →  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) : ( 𝐵  ∖  {  0  } ) ⟶ ℕ0  ∧  ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  +  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑦 ) )  ∧  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 0g ‘ 𝑌 ) )  =  0 ) ) | 
						
							| 91 | 8 2 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 92 | 5 91 | ressbas2 | ⊢ ( ( 𝐵  ∖  {  0  } )  ⊆  𝐵  →  ( 𝐵  ∖  {  0  } )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 93 | 21 92 | ax-mp | ⊢ ( 𝐵  ∖  {  0  } )  =  ( Base ‘ 𝑌 ) | 
						
							| 94 |  | nn0sscn | ⊢ ℕ0  ⊆  ℂ | 
						
							| 95 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 96 | 6 95 | ressbas2 | ⊢ ( ℕ0  ⊆  ℂ  →  ℕ0  =  ( Base ‘ 𝑁 ) ) | 
						
							| 97 | 94 96 | ax-mp | ⊢ ℕ0  =  ( Base ‘ 𝑁 ) | 
						
							| 98 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 99 |  | difexg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∖  {  0  } )  ∈  V ) | 
						
							| 100 | 98 99 | ax-mp | ⊢ ( 𝐵  ∖  {  0  } )  ∈  V | 
						
							| 101 | 8 40 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 102 | 5 101 | ressplusg | ⊢ ( ( 𝐵  ∖  {  0  } )  ∈  V  →  ( .r ‘ 𝑃 )  =  ( +g ‘ 𝑌 ) ) | 
						
							| 103 | 100 102 | ax-mp | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ 𝑌 ) | 
						
							| 104 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 105 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 106 | 6 105 | ressplusg | ⊢ ( ℕ0  ∈  V  →   +   =  ( +g ‘ 𝑁 ) ) | 
						
							| 107 | 104 106 | ax-mp | ⊢  +   =  ( +g ‘ 𝑁 ) | 
						
							| 108 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 109 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 110 | 6 109 | subm0 | ⊢ ( ℕ0  ∈  ( SubMnd ‘ ℂfld )  →  0  =  ( 0g ‘ 𝑁 ) ) | 
						
							| 111 | 14 110 | ax-mp | ⊢ 0  =  ( 0g ‘ 𝑁 ) | 
						
							| 112 | 93 97 103 107 108 111 | ismhm | ⊢ ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) )  ∈  ( 𝑌  MndHom  𝑁 )  ↔  ( ( 𝑌  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) : ( 𝐵  ∖  {  0  } ) ⟶ ℕ0  ∧  ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑦  ∈  ( 𝐵  ∖  {  0  } ) ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑥 )  +  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ 𝑦 ) )  ∧  ( ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) ) ‘ ( 0g ‘ 𝑌 ) )  =  0 ) ) ) | 
						
							| 113 | 17 90 112 | sylanbrc | ⊢ ( 𝑅  ∈  Domn  →  ( 𝐷  ↾  ( 𝐵  ∖  {  0  } ) )  ∈  ( 𝑌  MndHom  𝑁 ) ) |