Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mhm.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1mhm.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
deg1mhm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
deg1mhm.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
5 |
|
deg1mhm.y |
⊢ 𝑌 = ( ( mulGrp ‘ 𝑃 ) ↾s ( 𝐵 ∖ { 0 } ) ) |
6 |
|
deg1mhm.n |
⊢ 𝑁 = ( ℂfld ↾s ℕ0 ) |
7 |
3
|
ply1domn |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Domn ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
9 |
2 4 8
|
isdomn3 |
⊢ ( 𝑃 ∈ Domn ↔ ( 𝑃 ∈ Ring ∧ ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) ) |
10 |
9
|
simprbi |
⊢ ( 𝑃 ∈ Domn → ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
11 |
7 10
|
syl |
⊢ ( 𝑅 ∈ Domn → ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
12 |
5
|
submmnd |
⊢ ( ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) → 𝑌 ∈ Mnd ) |
13 |
11 12
|
syl |
⊢ ( 𝑅 ∈ Domn → 𝑌 ∈ Mnd ) |
14 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
15 |
6
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 𝑁 ∈ Mnd ) |
16 |
14 15
|
mp1i |
⊢ ( 𝑅 ∈ Domn → 𝑁 ∈ Mnd ) |
17 |
13 16
|
jca |
⊢ ( 𝑅 ∈ Domn → ( 𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ) |
18 |
1 3 2
|
deg1xrf |
⊢ 𝐷 : 𝐵 ⟶ ℝ* |
19 |
|
ffn |
⊢ ( 𝐷 : 𝐵 ⟶ ℝ* → 𝐷 Fn 𝐵 ) |
20 |
18 19
|
ax-mp |
⊢ 𝐷 Fn 𝐵 |
21 |
|
difss |
⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 |
22 |
|
fnssres |
⊢ ( ( 𝐷 Fn 𝐵 ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 ) → ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) Fn ( 𝐵 ∖ { 0 } ) ) |
23 |
20 21 22
|
mp2an |
⊢ ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) Fn ( 𝐵 ∖ { 0 } ) |
24 |
23
|
a1i |
⊢ ( 𝑅 ∈ Domn → ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) Fn ( 𝐵 ∖ { 0 } ) ) |
25 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝑥 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝑥 ) ) |
27 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
28 |
27
|
adantr |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
29 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐵 ) |
30 |
29
|
adantl |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ 𝐵 ) |
31 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ≠ 0 ) |
32 |
31
|
adantl |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
33 |
1 3 4 2
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → ( 𝐷 ‘ 𝑥 ) ∈ ℕ0 ) |
34 |
28 30 32 33
|
syl3anc |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝐷 ‘ 𝑥 ) ∈ ℕ0 ) |
35 |
26 34
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) ∈ ℕ0 ) |
36 |
35
|
ralrimiva |
⊢ ( 𝑅 ∈ Domn → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) ∈ ℕ0 ) |
37 |
|
ffnfv |
⊢ ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) : ( 𝐵 ∖ { 0 } ) ⟶ ℕ0 ↔ ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) Fn ( 𝐵 ∖ { 0 } ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) ∈ ℕ0 ) ) |
38 |
24 36 37
|
sylanbrc |
⊢ ( 𝑅 ∈ Domn → ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) : ( 𝐵 ∖ { 0 } ) ⟶ ℕ0 ) |
39 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
40 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
41 |
27
|
adantr |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑅 ∈ Ring ) |
42 |
29
|
ad2antrl |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑥 ∈ 𝐵 ) |
43 |
31
|
ad2antrl |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑥 ≠ 0 ) |
44 |
|
simpl |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑅 ∈ Domn ) |
45 |
|
eqid |
⊢ ( coe1 ‘ 𝑥 ) = ( coe1 ‘ 𝑥 ) |
46 |
1 3 4 2 39 45
|
deg1ldgdomn |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → ( ( coe1 ‘ 𝑥 ) ‘ ( 𝐷 ‘ 𝑥 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
47 |
44 42 43 46
|
syl3anc |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( coe1 ‘ 𝑥 ) ‘ ( 𝐷 ‘ 𝑥 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
48 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → 𝑦 ∈ 𝐵 ) |
49 |
48
|
ad2antll |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑦 ∈ 𝐵 ) |
50 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → 𝑦 ≠ 0 ) |
51 |
50
|
ad2antll |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑦 ≠ 0 ) |
52 |
1 3 39 2 40 4 41 42 43 47 49 51
|
deg1mul2 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝐷 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐷 ‘ 𝑥 ) + ( 𝐷 ‘ 𝑦 ) ) ) |
53 |
|
domnring |
⊢ ( 𝑃 ∈ Domn → 𝑃 ∈ Ring ) |
54 |
7 53
|
syl |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Ring ) |
55 |
54
|
adantr |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑃 ∈ Ring ) |
56 |
2 40
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
57 |
55 42 49 56
|
syl3anc |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
58 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → 𝑃 ∈ Domn ) |
59 |
2 40 4
|
domnmuln0 |
⊢ ( ( 𝑃 ∈ Domn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ 0 ) |
60 |
58 42 43 49 51 59
|
syl122anc |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ 0 ) |
61 |
|
eldifsn |
⊢ ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ∧ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ≠ 0 ) ) |
62 |
57 60 61
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
63 |
|
fvres |
⊢ ( ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐷 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) |
64 |
62 63
|
syl |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐷 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) |
65 |
|
fvres |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑦 ) = ( 𝐷 ‘ 𝑦 ) ) |
66 |
25 65
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) + ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑦 ) ) = ( ( 𝐷 ‘ 𝑥 ) + ( 𝐷 ‘ 𝑦 ) ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) + ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑦 ) ) = ( ( 𝐷 ‘ 𝑥 ) + ( 𝐷 ‘ 𝑦 ) ) ) |
68 |
52 64 67
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) + ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑦 ) ) ) |
69 |
68
|
ralrimivva |
⊢ ( 𝑅 ∈ Domn → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) + ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑦 ) ) ) |
70 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
71 |
2 70
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
72 |
54 71
|
syl |
⊢ ( 𝑅 ∈ Domn → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
73 |
|
domnnzr |
⊢ ( 𝑃 ∈ Domn → 𝑃 ∈ NzRing ) |
74 |
70 4
|
nzrnz |
⊢ ( 𝑃 ∈ NzRing → ( 1r ‘ 𝑃 ) ≠ 0 ) |
75 |
7 73 74
|
3syl |
⊢ ( 𝑅 ∈ Domn → ( 1r ‘ 𝑃 ) ≠ 0 ) |
76 |
|
eldifsn |
⊢ ( ( 1r ‘ 𝑃 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 1r ‘ 𝑃 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑃 ) ≠ 0 ) ) |
77 |
72 75 76
|
sylanbrc |
⊢ ( 𝑅 ∈ Domn → ( 1r ‘ 𝑃 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
78 |
|
fvres |
⊢ ( ( 1r ‘ 𝑃 ) ∈ ( 𝐵 ∖ { 0 } ) → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 1r ‘ 𝑃 ) ) = ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) ) |
79 |
77 78
|
syl |
⊢ ( 𝑅 ∈ Domn → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 1r ‘ 𝑃 ) ) = ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) ) |
80 |
8 70
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) |
81 |
5 80
|
subm0 |
⊢ ( ( 𝐵 ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) → ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑌 ) ) |
82 |
11 81
|
syl |
⊢ ( 𝑅 ∈ Domn → ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑌 ) ) |
83 |
82
|
fveq2d |
⊢ ( 𝑅 ∈ Domn → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 1r ‘ 𝑃 ) ) = ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 0g ‘ 𝑌 ) ) ) |
84 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
85 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
86 |
3 70 85 1
|
mon1pid |
⊢ ( 𝑅 ∈ NzRing → ( ( 1r ‘ 𝑃 ) ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) = 0 ) ) |
87 |
86
|
simprd |
⊢ ( 𝑅 ∈ NzRing → ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) = 0 ) |
88 |
84 87
|
syl |
⊢ ( 𝑅 ∈ Domn → ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) = 0 ) |
89 |
79 83 88
|
3eqtr3d |
⊢ ( 𝑅 ∈ Domn → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 0g ‘ 𝑌 ) ) = 0 ) |
90 |
38 69 89
|
3jca |
⊢ ( 𝑅 ∈ Domn → ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) : ( 𝐵 ∖ { 0 } ) ⟶ ℕ0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) + ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑦 ) ) ∧ ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 0g ‘ 𝑌 ) ) = 0 ) ) |
91 |
8 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
92 |
5 91
|
ressbas2 |
⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ 𝑌 ) ) |
93 |
21 92
|
ax-mp |
⊢ ( 𝐵 ∖ { 0 } ) = ( Base ‘ 𝑌 ) |
94 |
|
nn0sscn |
⊢ ℕ0 ⊆ ℂ |
95 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
96 |
6 95
|
ressbas2 |
⊢ ( ℕ0 ⊆ ℂ → ℕ0 = ( Base ‘ 𝑁 ) ) |
97 |
94 96
|
ax-mp |
⊢ ℕ0 = ( Base ‘ 𝑁 ) |
98 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
99 |
|
difexg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V ) |
100 |
98 99
|
ax-mp |
⊢ ( 𝐵 ∖ { 0 } ) ∈ V |
101 |
8 40
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) ) |
102 |
5 101
|
ressplusg |
⊢ ( ( 𝐵 ∖ { 0 } ) ∈ V → ( .r ‘ 𝑃 ) = ( +g ‘ 𝑌 ) ) |
103 |
100 102
|
ax-mp |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑌 ) |
104 |
|
nn0ex |
⊢ ℕ0 ∈ V |
105 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
106 |
6 105
|
ressplusg |
⊢ ( ℕ0 ∈ V → + = ( +g ‘ 𝑁 ) ) |
107 |
104 106
|
ax-mp |
⊢ + = ( +g ‘ 𝑁 ) |
108 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
109 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
110 |
6 109
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ 𝑁 ) ) |
111 |
14 110
|
ax-mp |
⊢ 0 = ( 0g ‘ 𝑁 ) |
112 |
93 97 103 107 108 111
|
ismhm |
⊢ ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ∈ ( 𝑌 MndHom 𝑁 ) ↔ ( ( 𝑌 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) : ( 𝐵 ∖ { 0 } ) ⟶ ℕ0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑥 ) + ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ 𝑦 ) ) ∧ ( ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ‘ ( 0g ‘ 𝑌 ) ) = 0 ) ) ) |
113 |
17 90 112
|
sylanbrc |
⊢ ( 𝑅 ∈ Domn → ( 𝐷 ↾ ( 𝐵 ∖ { 0 } ) ) ∈ ( 𝑌 MndHom 𝑁 ) ) |