Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cytpfn | ⊢ CytP Fn ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) ∈ V | |
| 2 | df-cytp | ⊢ CytP = ( 𝑛 ∈ ℕ ↦ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) ) | |
| 3 | 1 2 | fnmpti | ⊢ CytP Fn ℕ |