Metamath Proof Explorer


Theorem cytpfn

Description: Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion cytpfn
|- CytP Fn NN

Proof

Step Hyp Ref Expression
1 ovex
 |-  ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) e. _V
2 df-cytp
 |-  CytP = ( n e. NN |-> ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) )
3 1 2 fnmpti
 |-  CytP Fn NN