Step |
Hyp |
Ref |
Expression |
0 |
|
ccytp |
|- CytP |
1 |
|
vn |
|- n |
2 |
|
cn |
|- NN |
3 |
|
cmgp |
|- mulGrp |
4 |
|
cpl1 |
|- Poly1 |
5 |
|
ccnfld |
|- CCfld |
6 |
5 4
|
cfv |
|- ( Poly1 ` CCfld ) |
7 |
6 3
|
cfv |
|- ( mulGrp ` ( Poly1 ` CCfld ) ) |
8 |
|
cgsu |
|- gsum |
9 |
|
vr |
|- r |
10 |
|
cod |
|- od |
11 |
5 3
|
cfv |
|- ( mulGrp ` CCfld ) |
12 |
|
cress |
|- |`s |
13 |
|
cc |
|- CC |
14 |
|
cc0 |
|- 0 |
15 |
14
|
csn |
|- { 0 } |
16 |
13 15
|
cdif |
|- ( CC \ { 0 } ) |
17 |
11 16 12
|
co |
|- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
18 |
17 10
|
cfv |
|- ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
19 |
18
|
ccnv |
|- `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
20 |
1
|
cv |
|- n |
21 |
20
|
csn |
|- { n } |
22 |
19 21
|
cima |
|- ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |
23 |
|
cv1 |
|- var1 |
24 |
5 23
|
cfv |
|- ( var1 ` CCfld ) |
25 |
|
csg |
|- -g |
26 |
6 25
|
cfv |
|- ( -g ` ( Poly1 ` CCfld ) ) |
27 |
|
cascl |
|- algSc |
28 |
6 27
|
cfv |
|- ( algSc ` ( Poly1 ` CCfld ) ) |
29 |
9
|
cv |
|- r |
30 |
29 28
|
cfv |
|- ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) |
31 |
24 30 26
|
co |
|- ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) |
32 |
9 22 31
|
cmpt |
|- ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) |
33 |
7 32 8
|
co |
|- ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) |
34 |
1 2 33
|
cmpt |
|- ( n e. NN |-> ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) ) |
35 |
0 34
|
wceq |
|- CytP = ( n e. NN |-> ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) ) |