| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccytp |
|- CytP |
| 1 |
|
vn |
|- n |
| 2 |
|
cn |
|- NN |
| 3 |
|
cmgp |
|- mulGrp |
| 4 |
|
cpl1 |
|- Poly1 |
| 5 |
|
ccnfld |
|- CCfld |
| 6 |
5 4
|
cfv |
|- ( Poly1 ` CCfld ) |
| 7 |
6 3
|
cfv |
|- ( mulGrp ` ( Poly1 ` CCfld ) ) |
| 8 |
|
cgsu |
|- gsum |
| 9 |
|
vr |
|- r |
| 10 |
|
cod |
|- od |
| 11 |
5 3
|
cfv |
|- ( mulGrp ` CCfld ) |
| 12 |
|
cress |
|- |`s |
| 13 |
|
cc |
|- CC |
| 14 |
|
cc0 |
|- 0 |
| 15 |
14
|
csn |
|- { 0 } |
| 16 |
13 15
|
cdif |
|- ( CC \ { 0 } ) |
| 17 |
11 16 12
|
co |
|- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 18 |
17 10
|
cfv |
|- ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 19 |
18
|
ccnv |
|- `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 20 |
1
|
cv |
|- n |
| 21 |
20
|
csn |
|- { n } |
| 22 |
19 21
|
cima |
|- ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |
| 23 |
|
cv1 |
|- var1 |
| 24 |
5 23
|
cfv |
|- ( var1 ` CCfld ) |
| 25 |
|
csg |
|- -g |
| 26 |
6 25
|
cfv |
|- ( -g ` ( Poly1 ` CCfld ) ) |
| 27 |
|
cascl |
|- algSc |
| 28 |
6 27
|
cfv |
|- ( algSc ` ( Poly1 ` CCfld ) ) |
| 29 |
9
|
cv |
|- r |
| 30 |
29 28
|
cfv |
|- ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) |
| 31 |
24 30 26
|
co |
|- ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) |
| 32 |
9 22 31
|
cmpt |
|- ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) |
| 33 |
7 32 8
|
co |
|- ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) |
| 34 |
1 2 33
|
cmpt |
|- ( n e. NN |-> ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) ) |
| 35 |
0 34
|
wceq |
|- CytP = ( n e. NN |-> ( ( mulGrp ` ( Poly1 ` CCfld ) ) gsum ( r e. ( `' ( od ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) " { n } ) |-> ( ( var1 ` CCfld ) ( -g ` ( Poly1 ` CCfld ) ) ( ( algSc ` ( Poly1 ` CCfld ) ) ` r ) ) ) ) ) |