Step |
Hyp |
Ref |
Expression |
0 |
|
ccytp |
⊢ CytP |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cn |
⊢ ℕ |
3 |
|
cmgp |
⊢ mulGrp |
4 |
|
cpl1 |
⊢ Poly1 |
5 |
|
ccnfld |
⊢ ℂfld |
6 |
5 4
|
cfv |
⊢ ( Poly1 ‘ ℂfld ) |
7 |
6 3
|
cfv |
⊢ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) |
8 |
|
cgsu |
⊢ Σg |
9 |
|
vr |
⊢ 𝑟 |
10 |
|
cod |
⊢ od |
11 |
5 3
|
cfv |
⊢ ( mulGrp ‘ ℂfld ) |
12 |
|
cress |
⊢ ↾s |
13 |
|
cc |
⊢ ℂ |
14 |
|
cc0 |
⊢ 0 |
15 |
14
|
csn |
⊢ { 0 } |
16 |
13 15
|
cdif |
⊢ ( ℂ ∖ { 0 } ) |
17 |
11 16 12
|
co |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
18 |
17 10
|
cfv |
⊢ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
19 |
18
|
ccnv |
⊢ ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
20 |
1
|
cv |
⊢ 𝑛 |
21 |
20
|
csn |
⊢ { 𝑛 } |
22 |
19 21
|
cima |
⊢ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) |
23 |
|
cv1 |
⊢ var1 |
24 |
5 23
|
cfv |
⊢ ( var1 ‘ ℂfld ) |
25 |
|
csg |
⊢ -g |
26 |
6 25
|
cfv |
⊢ ( -g ‘ ( Poly1 ‘ ℂfld ) ) |
27 |
|
cascl |
⊢ algSc |
28 |
6 27
|
cfv |
⊢ ( algSc ‘ ( Poly1 ‘ ℂfld ) ) |
29 |
9
|
cv |
⊢ 𝑟 |
30 |
29 28
|
cfv |
⊢ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) |
31 |
24 30 26
|
co |
⊢ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) |
32 |
9 22 31
|
cmpt |
⊢ ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) |
33 |
7 32 8
|
co |
⊢ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) |
34 |
1 2 33
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) ) |
35 |
0 34
|
wceq |
⊢ CytP = ( 𝑛 ∈ ℕ ↦ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) ) |