| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccytp |
⊢ CytP |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cn |
⊢ ℕ |
| 3 |
|
cmgp |
⊢ mulGrp |
| 4 |
|
cpl1 |
⊢ Poly1 |
| 5 |
|
ccnfld |
⊢ ℂfld |
| 6 |
5 4
|
cfv |
⊢ ( Poly1 ‘ ℂfld ) |
| 7 |
6 3
|
cfv |
⊢ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) |
| 8 |
|
cgsu |
⊢ Σg |
| 9 |
|
vr |
⊢ 𝑟 |
| 10 |
|
cod |
⊢ od |
| 11 |
5 3
|
cfv |
⊢ ( mulGrp ‘ ℂfld ) |
| 12 |
|
cress |
⊢ ↾s |
| 13 |
|
cc |
⊢ ℂ |
| 14 |
|
cc0 |
⊢ 0 |
| 15 |
14
|
csn |
⊢ { 0 } |
| 16 |
13 15
|
cdif |
⊢ ( ℂ ∖ { 0 } ) |
| 17 |
11 16 12
|
co |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 18 |
17 10
|
cfv |
⊢ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 19 |
18
|
ccnv |
⊢ ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
| 20 |
1
|
cv |
⊢ 𝑛 |
| 21 |
20
|
csn |
⊢ { 𝑛 } |
| 22 |
19 21
|
cima |
⊢ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) |
| 23 |
|
cv1 |
⊢ var1 |
| 24 |
5 23
|
cfv |
⊢ ( var1 ‘ ℂfld ) |
| 25 |
|
csg |
⊢ -g |
| 26 |
6 25
|
cfv |
⊢ ( -g ‘ ( Poly1 ‘ ℂfld ) ) |
| 27 |
|
cascl |
⊢ algSc |
| 28 |
6 27
|
cfv |
⊢ ( algSc ‘ ( Poly1 ‘ ℂfld ) ) |
| 29 |
9
|
cv |
⊢ 𝑟 |
| 30 |
29 28
|
cfv |
⊢ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) |
| 31 |
24 30 26
|
co |
⊢ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) |
| 32 |
9 22 31
|
cmpt |
⊢ ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) |
| 33 |
7 32 8
|
co |
⊢ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) |
| 34 |
1 2 33
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) ) |
| 35 |
0 34
|
wceq |
⊢ CytP = ( 𝑛 ∈ ℕ ↦ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) ) |