Step |
Hyp |
Ref |
Expression |
1 |
|
cytpval.t |
⊢ 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
2 |
|
cytpval.o |
⊢ 𝑂 = ( od ‘ 𝑇 ) |
3 |
|
cytpval.p |
⊢ 𝑃 = ( Poly1 ‘ ℂfld ) |
4 |
|
cytpval.x |
⊢ 𝑋 = ( var1 ‘ ℂfld ) |
5 |
|
cytpval.q |
⊢ 𝑄 = ( mulGrp ‘ 𝑃 ) |
6 |
|
cytpval.m |
⊢ − = ( -g ‘ 𝑃 ) |
7 |
|
cytpval.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
8 |
3
|
eqcomi |
⊢ ( Poly1 ‘ ℂfld ) = 𝑃 |
9 |
8
|
fveq2i |
⊢ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) = ( mulGrp ‘ 𝑃 ) |
10 |
9 5
|
eqtr4i |
⊢ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) = 𝑄 |
11 |
10
|
a1i |
⊢ ( 𝑛 = 𝑁 → ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) = 𝑄 ) |
12 |
1
|
fveq2i |
⊢ ( od ‘ 𝑇 ) = ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
13 |
2 12
|
eqtri |
⊢ 𝑂 = ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
14 |
13
|
cnveqi |
⊢ ◡ 𝑂 = ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
15 |
14
|
imaeq1i |
⊢ ( ◡ 𝑂 “ { 𝑛 } ) = ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) |
16 |
|
sneq |
⊢ ( 𝑛 = 𝑁 → { 𝑛 } = { 𝑁 } ) |
17 |
16
|
imaeq2d |
⊢ ( 𝑛 = 𝑁 → ( ◡ 𝑂 “ { 𝑛 } ) = ( ◡ 𝑂 “ { 𝑁 } ) ) |
18 |
15 17
|
eqtr3id |
⊢ ( 𝑛 = 𝑁 → ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) = ( ◡ 𝑂 “ { 𝑁 } ) ) |
19 |
3
|
fveq2i |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ ( Poly1 ‘ ℂfld ) ) |
20 |
7 19
|
eqtri |
⊢ 𝐴 = ( algSc ‘ ( Poly1 ‘ ℂfld ) ) |
21 |
20
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑟 ) = ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) |
22 |
3
|
fveq2i |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ ( Poly1 ‘ ℂfld ) ) |
23 |
6 22
|
eqtri |
⊢ − = ( -g ‘ ( Poly1 ‘ ℂfld ) ) |
24 |
4 21 23
|
oveq123i |
⊢ ( 𝑋 − ( 𝐴 ‘ 𝑟 ) ) = ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) |
25 |
24
|
eqcomi |
⊢ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) = ( 𝑋 − ( 𝐴 ‘ 𝑟 ) ) |
26 |
25
|
a1i |
⊢ ( 𝑛 = 𝑁 → ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) = ( 𝑋 − ( 𝐴 ‘ 𝑟 ) ) ) |
27 |
18 26
|
mpteq12dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) = ( 𝑟 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ↦ ( 𝑋 − ( 𝐴 ‘ 𝑟 ) ) ) ) |
28 |
11 27
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) = ( 𝑄 Σg ( 𝑟 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ↦ ( 𝑋 − ( 𝐴 ‘ 𝑟 ) ) ) ) ) |
29 |
|
df-cytp |
⊢ CytP = ( 𝑛 ∈ ℕ ↦ ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) Σg ( 𝑟 ∈ ( ◡ ( od ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) “ { 𝑛 } ) ↦ ( ( var1 ‘ ℂfld ) ( -g ‘ ( Poly1 ‘ ℂfld ) ) ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ 𝑟 ) ) ) ) ) |
30 |
|
ovex |
⊢ ( 𝑄 Σg ( 𝑟 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ↦ ( 𝑋 − ( 𝐴 ‘ 𝑟 ) ) ) ) ∈ V |
31 |
28 29 30
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( CytP ‘ 𝑁 ) = ( 𝑄 Σg ( 𝑟 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ↦ ( 𝑋 − ( 𝐴 ‘ 𝑟 ) ) ) ) ) |