| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1mhm.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1mhm.b |
|- B = ( Base ` P ) |
| 3 |
|
deg1mhm.p |
|- P = ( Poly1 ` R ) |
| 4 |
|
deg1mhm.z |
|- .0. = ( 0g ` P ) |
| 5 |
|
deg1mhm.y |
|- Y = ( ( mulGrp ` P ) |`s ( B \ { .0. } ) ) |
| 6 |
|
deg1mhm.n |
|- N = ( CCfld |`s NN0 ) |
| 7 |
3
|
ply1domn |
|- ( R e. Domn -> P e. Domn ) |
| 8 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 9 |
2 4 8
|
isdomn3 |
|- ( P e. Domn <-> ( P e. Ring /\ ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) ) |
| 10 |
9
|
simprbi |
|- ( P e. Domn -> ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) |
| 11 |
7 10
|
syl |
|- ( R e. Domn -> ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) |
| 12 |
5
|
submmnd |
|- ( ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) -> Y e. Mnd ) |
| 13 |
11 12
|
syl |
|- ( R e. Domn -> Y e. Mnd ) |
| 14 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
| 15 |
6
|
submmnd |
|- ( NN0 e. ( SubMnd ` CCfld ) -> N e. Mnd ) |
| 16 |
14 15
|
mp1i |
|- ( R e. Domn -> N e. Mnd ) |
| 17 |
13 16
|
jca |
|- ( R e. Domn -> ( Y e. Mnd /\ N e. Mnd ) ) |
| 18 |
1 3 2
|
deg1xrf |
|- D : B --> RR* |
| 19 |
|
ffn |
|- ( D : B --> RR* -> D Fn B ) |
| 20 |
18 19
|
ax-mp |
|- D Fn B |
| 21 |
|
difss |
|- ( B \ { .0. } ) C_ B |
| 22 |
|
fnssres |
|- ( ( D Fn B /\ ( B \ { .0. } ) C_ B ) -> ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) ) |
| 23 |
20 21 22
|
mp2an |
|- ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) |
| 24 |
23
|
a1i |
|- ( R e. Domn -> ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) ) |
| 25 |
|
fvres |
|- ( x e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) = ( D ` x ) ) |
| 26 |
25
|
adantl |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) = ( D ` x ) ) |
| 27 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 28 |
27
|
adantr |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> R e. Ring ) |
| 29 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
| 30 |
29
|
adantl |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> x e. B ) |
| 31 |
|
eldifsni |
|- ( x e. ( B \ { .0. } ) -> x =/= .0. ) |
| 32 |
31
|
adantl |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> x =/= .0. ) |
| 33 |
1 3 4 2
|
deg1nn0cl |
|- ( ( R e. Ring /\ x e. B /\ x =/= .0. ) -> ( D ` x ) e. NN0 ) |
| 34 |
28 30 32 33
|
syl3anc |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( D ` x ) e. NN0 ) |
| 35 |
26 34
|
eqeltrd |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) |
| 36 |
35
|
ralrimiva |
|- ( R e. Domn -> A. x e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) |
| 37 |
|
ffnfv |
|- ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 <-> ( ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) ) |
| 38 |
24 36 37
|
sylanbrc |
|- ( R e. Domn -> ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 ) |
| 39 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
| 40 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 41 |
27
|
adantr |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> R e. Ring ) |
| 42 |
29
|
ad2antrl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> x e. B ) |
| 43 |
31
|
ad2antrl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> x =/= .0. ) |
| 44 |
|
simpl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> R e. Domn ) |
| 45 |
|
eqid |
|- ( coe1 ` x ) = ( coe1 ` x ) |
| 46 |
1 3 4 2 39 45
|
deg1ldgdomn |
|- ( ( R e. Domn /\ x e. B /\ x =/= .0. ) -> ( ( coe1 ` x ) ` ( D ` x ) ) e. ( RLReg ` R ) ) |
| 47 |
44 42 43 46
|
syl3anc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( coe1 ` x ) ` ( D ` x ) ) e. ( RLReg ` R ) ) |
| 48 |
|
eldifi |
|- ( y e. ( B \ { .0. } ) -> y e. B ) |
| 49 |
48
|
ad2antll |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> y e. B ) |
| 50 |
|
eldifsni |
|- ( y e. ( B \ { .0. } ) -> y =/= .0. ) |
| 51 |
50
|
ad2antll |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> y =/= .0. ) |
| 52 |
1 3 39 2 40 4 41 42 43 47 49 51
|
deg1mul2 |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( D ` ( x ( .r ` P ) y ) ) = ( ( D ` x ) + ( D ` y ) ) ) |
| 53 |
|
domnring |
|- ( P e. Domn -> P e. Ring ) |
| 54 |
7 53
|
syl |
|- ( R e. Domn -> P e. Ring ) |
| 55 |
54
|
adantr |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> P e. Ring ) |
| 56 |
2 40
|
ringcl |
|- ( ( P e. Ring /\ x e. B /\ y e. B ) -> ( x ( .r ` P ) y ) e. B ) |
| 57 |
55 42 49 56
|
syl3anc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) e. B ) |
| 58 |
7
|
adantr |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> P e. Domn ) |
| 59 |
2 40 4
|
domnmuln0 |
|- ( ( P e. Domn /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x ( .r ` P ) y ) =/= .0. ) |
| 60 |
58 42 43 49 51 59
|
syl122anc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) =/= .0. ) |
| 61 |
|
eldifsn |
|- ( ( x ( .r ` P ) y ) e. ( B \ { .0. } ) <-> ( ( x ( .r ` P ) y ) e. B /\ ( x ( .r ` P ) y ) =/= .0. ) ) |
| 62 |
57 60 61
|
sylanbrc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) e. ( B \ { .0. } ) ) |
| 63 |
|
fvres |
|- ( ( x ( .r ` P ) y ) e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( D ` ( x ( .r ` P ) y ) ) ) |
| 64 |
62 63
|
syl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( D ` ( x ( .r ` P ) y ) ) ) |
| 65 |
|
fvres |
|- ( y e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` y ) = ( D ` y ) ) |
| 66 |
25 65
|
oveqan12d |
|- ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) = ( ( D ` x ) + ( D ` y ) ) ) |
| 67 |
66
|
adantl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) = ( ( D ` x ) + ( D ` y ) ) ) |
| 68 |
52 64 67
|
3eqtr4d |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) ) |
| 69 |
68
|
ralrimivva |
|- ( R e. Domn -> A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) ) |
| 70 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 71 |
2 70
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. B ) |
| 72 |
54 71
|
syl |
|- ( R e. Domn -> ( 1r ` P ) e. B ) |
| 73 |
|
domnnzr |
|- ( P e. Domn -> P e. NzRing ) |
| 74 |
70 4
|
nzrnz |
|- ( P e. NzRing -> ( 1r ` P ) =/= .0. ) |
| 75 |
7 73 74
|
3syl |
|- ( R e. Domn -> ( 1r ` P ) =/= .0. ) |
| 76 |
|
eldifsn |
|- ( ( 1r ` P ) e. ( B \ { .0. } ) <-> ( ( 1r ` P ) e. B /\ ( 1r ` P ) =/= .0. ) ) |
| 77 |
72 75 76
|
sylanbrc |
|- ( R e. Domn -> ( 1r ` P ) e. ( B \ { .0. } ) ) |
| 78 |
|
fvres |
|- ( ( 1r ` P ) e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( D ` ( 1r ` P ) ) ) |
| 79 |
77 78
|
syl |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( D ` ( 1r ` P ) ) ) |
| 80 |
8 70
|
ringidval |
|- ( 1r ` P ) = ( 0g ` ( mulGrp ` P ) ) |
| 81 |
5 80
|
subm0 |
|- ( ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) -> ( 1r ` P ) = ( 0g ` Y ) ) |
| 82 |
11 81
|
syl |
|- ( R e. Domn -> ( 1r ` P ) = ( 0g ` Y ) ) |
| 83 |
82
|
fveq2d |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) ) |
| 84 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 85 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
| 86 |
3 70 85 1
|
mon1pid |
|- ( R e. NzRing -> ( ( 1r ` P ) e. ( Monic1p ` R ) /\ ( D ` ( 1r ` P ) ) = 0 ) ) |
| 87 |
86
|
simprd |
|- ( R e. NzRing -> ( D ` ( 1r ` P ) ) = 0 ) |
| 88 |
84 87
|
syl |
|- ( R e. Domn -> ( D ` ( 1r ` P ) ) = 0 ) |
| 89 |
79 83 88
|
3eqtr3d |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) |
| 90 |
38 69 89
|
3jca |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) /\ ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) ) |
| 91 |
8 2
|
mgpbas |
|- B = ( Base ` ( mulGrp ` P ) ) |
| 92 |
5 91
|
ressbas2 |
|- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` Y ) ) |
| 93 |
21 92
|
ax-mp |
|- ( B \ { .0. } ) = ( Base ` Y ) |
| 94 |
|
nn0sscn |
|- NN0 C_ CC |
| 95 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 96 |
6 95
|
ressbas2 |
|- ( NN0 C_ CC -> NN0 = ( Base ` N ) ) |
| 97 |
94 96
|
ax-mp |
|- NN0 = ( Base ` N ) |
| 98 |
2
|
fvexi |
|- B e. _V |
| 99 |
|
difexg |
|- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
| 100 |
98 99
|
ax-mp |
|- ( B \ { .0. } ) e. _V |
| 101 |
8 40
|
mgpplusg |
|- ( .r ` P ) = ( +g ` ( mulGrp ` P ) ) |
| 102 |
5 101
|
ressplusg |
|- ( ( B \ { .0. } ) e. _V -> ( .r ` P ) = ( +g ` Y ) ) |
| 103 |
100 102
|
ax-mp |
|- ( .r ` P ) = ( +g ` Y ) |
| 104 |
|
nn0ex |
|- NN0 e. _V |
| 105 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 106 |
6 105
|
ressplusg |
|- ( NN0 e. _V -> + = ( +g ` N ) ) |
| 107 |
104 106
|
ax-mp |
|- + = ( +g ` N ) |
| 108 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
| 109 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 110 |
6 109
|
subm0 |
|- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` N ) ) |
| 111 |
14 110
|
ax-mp |
|- 0 = ( 0g ` N ) |
| 112 |
93 97 103 107 108 111
|
ismhm |
|- ( ( D |` ( B \ { .0. } ) ) e. ( Y MndHom N ) <-> ( ( Y e. Mnd /\ N e. Mnd ) /\ ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) /\ ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) ) ) |
| 113 |
17 90 112
|
sylanbrc |
|- ( R e. Domn -> ( D |` ( B \ { .0. } ) ) e. ( Y MndHom N ) ) |