| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1mhm.d |  |-  D = ( deg1 ` R ) | 
						
							| 2 |  | deg1mhm.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | deg1mhm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | deg1mhm.z |  |-  .0. = ( 0g ` P ) | 
						
							| 5 |  | deg1mhm.y |  |-  Y = ( ( mulGrp ` P ) |`s ( B \ { .0. } ) ) | 
						
							| 6 |  | deg1mhm.n |  |-  N = ( CCfld |`s NN0 ) | 
						
							| 7 | 3 | ply1domn |  |-  ( R e. Domn -> P e. Domn ) | 
						
							| 8 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 9 | 2 4 8 | isdomn3 |  |-  ( P e. Domn <-> ( P e. Ring /\ ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) ) | 
						
							| 10 | 9 | simprbi |  |-  ( P e. Domn -> ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( R e. Domn -> ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) | 
						
							| 12 | 5 | submmnd |  |-  ( ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) -> Y e. Mnd ) | 
						
							| 13 | 11 12 | syl |  |-  ( R e. Domn -> Y e. Mnd ) | 
						
							| 14 |  | nn0subm |  |-  NN0 e. ( SubMnd ` CCfld ) | 
						
							| 15 | 6 | submmnd |  |-  ( NN0 e. ( SubMnd ` CCfld ) -> N e. Mnd ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( R e. Domn -> N e. Mnd ) | 
						
							| 17 | 13 16 | jca |  |-  ( R e. Domn -> ( Y e. Mnd /\ N e. Mnd ) ) | 
						
							| 18 | 1 3 2 | deg1xrf |  |-  D : B --> RR* | 
						
							| 19 |  | ffn |  |-  ( D : B --> RR* -> D Fn B ) | 
						
							| 20 | 18 19 | ax-mp |  |-  D Fn B | 
						
							| 21 |  | difss |  |-  ( B \ { .0. } ) C_ B | 
						
							| 22 |  | fnssres |  |-  ( ( D Fn B /\ ( B \ { .0. } ) C_ B ) -> ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) ) | 
						
							| 23 | 20 21 22 | mp2an |  |-  ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) | 
						
							| 24 | 23 | a1i |  |-  ( R e. Domn -> ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) ) | 
						
							| 25 |  | fvres |  |-  ( x e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) = ( D ` x ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) = ( D ` x ) ) | 
						
							| 27 |  | domnring |  |-  ( R e. Domn -> R e. Ring ) | 
						
							| 28 | 27 | adantr |  |-  ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> R e. Ring ) | 
						
							| 29 |  | eldifi |  |-  ( x e. ( B \ { .0. } ) -> x e. B ) | 
						
							| 30 | 29 | adantl |  |-  ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> x e. B ) | 
						
							| 31 |  | eldifsni |  |-  ( x e. ( B \ { .0. } ) -> x =/= .0. ) | 
						
							| 32 | 31 | adantl |  |-  ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> x =/= .0. ) | 
						
							| 33 | 1 3 4 2 | deg1nn0cl |  |-  ( ( R e. Ring /\ x e. B /\ x =/= .0. ) -> ( D ` x ) e. NN0 ) | 
						
							| 34 | 28 30 32 33 | syl3anc |  |-  ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( D ` x ) e. NN0 ) | 
						
							| 35 | 26 34 | eqeltrd |  |-  ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) | 
						
							| 36 | 35 | ralrimiva |  |-  ( R e. Domn -> A. x e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) | 
						
							| 37 |  | ffnfv |  |-  ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 <-> ( ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) ) | 
						
							| 38 | 24 36 37 | sylanbrc |  |-  ( R e. Domn -> ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 ) | 
						
							| 39 |  | eqid |  |-  ( RLReg ` R ) = ( RLReg ` R ) | 
						
							| 40 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 41 | 27 | adantr |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> R e. Ring ) | 
						
							| 42 | 29 | ad2antrl |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> x e. B ) | 
						
							| 43 | 31 | ad2antrl |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> x =/= .0. ) | 
						
							| 44 |  | simpl |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> R e. Domn ) | 
						
							| 45 |  | eqid |  |-  ( coe1 ` x ) = ( coe1 ` x ) | 
						
							| 46 | 1 3 4 2 39 45 | deg1ldgdomn |  |-  ( ( R e. Domn /\ x e. B /\ x =/= .0. ) -> ( ( coe1 ` x ) ` ( D ` x ) ) e. ( RLReg ` R ) ) | 
						
							| 47 | 44 42 43 46 | syl3anc |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( coe1 ` x ) ` ( D ` x ) ) e. ( RLReg ` R ) ) | 
						
							| 48 |  | eldifi |  |-  ( y e. ( B \ { .0. } ) -> y e. B ) | 
						
							| 49 | 48 | ad2antll |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> y e. B ) | 
						
							| 50 |  | eldifsni |  |-  ( y e. ( B \ { .0. } ) -> y =/= .0. ) | 
						
							| 51 | 50 | ad2antll |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> y =/= .0. ) | 
						
							| 52 | 1 3 39 2 40 4 41 42 43 47 49 51 | deg1mul2 |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( D ` ( x ( .r ` P ) y ) ) = ( ( D ` x ) + ( D ` y ) ) ) | 
						
							| 53 |  | domnring |  |-  ( P e. Domn -> P e. Ring ) | 
						
							| 54 | 7 53 | syl |  |-  ( R e. Domn -> P e. Ring ) | 
						
							| 55 | 54 | adantr |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> P e. Ring ) | 
						
							| 56 | 2 40 | ringcl |  |-  ( ( P e. Ring /\ x e. B /\ y e. B ) -> ( x ( .r ` P ) y ) e. B ) | 
						
							| 57 | 55 42 49 56 | syl3anc |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) e. B ) | 
						
							| 58 | 7 | adantr |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> P e. Domn ) | 
						
							| 59 | 2 40 4 | domnmuln0 |  |-  ( ( P e. Domn /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x ( .r ` P ) y ) =/= .0. ) | 
						
							| 60 | 58 42 43 49 51 59 | syl122anc |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) =/= .0. ) | 
						
							| 61 |  | eldifsn |  |-  ( ( x ( .r ` P ) y ) e. ( B \ { .0. } ) <-> ( ( x ( .r ` P ) y ) e. B /\ ( x ( .r ` P ) y ) =/= .0. ) ) | 
						
							| 62 | 57 60 61 | sylanbrc |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) e. ( B \ { .0. } ) ) | 
						
							| 63 |  | fvres |  |-  ( ( x ( .r ` P ) y ) e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( D ` ( x ( .r ` P ) y ) ) ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( D ` ( x ( .r ` P ) y ) ) ) | 
						
							| 65 |  | fvres |  |-  ( y e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` y ) = ( D ` y ) ) | 
						
							| 66 | 25 65 | oveqan12d |  |-  ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) = ( ( D ` x ) + ( D ` y ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) = ( ( D ` x ) + ( D ` y ) ) ) | 
						
							| 68 | 52 64 67 | 3eqtr4d |  |-  ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) ) | 
						
							| 69 | 68 | ralrimivva |  |-  ( R e. Domn -> A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) ) | 
						
							| 70 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 71 | 2 70 | ringidcl |  |-  ( P e. Ring -> ( 1r ` P ) e. B ) | 
						
							| 72 | 54 71 | syl |  |-  ( R e. Domn -> ( 1r ` P ) e. B ) | 
						
							| 73 |  | domnnzr |  |-  ( P e. Domn -> P e. NzRing ) | 
						
							| 74 | 70 4 | nzrnz |  |-  ( P e. NzRing -> ( 1r ` P ) =/= .0. ) | 
						
							| 75 | 7 73 74 | 3syl |  |-  ( R e. Domn -> ( 1r ` P ) =/= .0. ) | 
						
							| 76 |  | eldifsn |  |-  ( ( 1r ` P ) e. ( B \ { .0. } ) <-> ( ( 1r ` P ) e. B /\ ( 1r ` P ) =/= .0. ) ) | 
						
							| 77 | 72 75 76 | sylanbrc |  |-  ( R e. Domn -> ( 1r ` P ) e. ( B \ { .0. } ) ) | 
						
							| 78 |  | fvres |  |-  ( ( 1r ` P ) e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( D ` ( 1r ` P ) ) ) | 
						
							| 79 | 77 78 | syl |  |-  ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( D ` ( 1r ` P ) ) ) | 
						
							| 80 | 8 70 | ringidval |  |-  ( 1r ` P ) = ( 0g ` ( mulGrp ` P ) ) | 
						
							| 81 | 5 80 | subm0 |  |-  ( ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) -> ( 1r ` P ) = ( 0g ` Y ) ) | 
						
							| 82 | 11 81 | syl |  |-  ( R e. Domn -> ( 1r ` P ) = ( 0g ` Y ) ) | 
						
							| 83 | 82 | fveq2d |  |-  ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) ) | 
						
							| 84 |  | domnnzr |  |-  ( R e. Domn -> R e. NzRing ) | 
						
							| 85 |  | eqid |  |-  ( Monic1p ` R ) = ( Monic1p ` R ) | 
						
							| 86 | 3 70 85 1 | mon1pid |  |-  ( R e. NzRing -> ( ( 1r ` P ) e. ( Monic1p ` R ) /\ ( D ` ( 1r ` P ) ) = 0 ) ) | 
						
							| 87 | 86 | simprd |  |-  ( R e. NzRing -> ( D ` ( 1r ` P ) ) = 0 ) | 
						
							| 88 | 84 87 | syl |  |-  ( R e. Domn -> ( D ` ( 1r ` P ) ) = 0 ) | 
						
							| 89 | 79 83 88 | 3eqtr3d |  |-  ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) | 
						
							| 90 | 38 69 89 | 3jca |  |-  ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) /\ ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) ) | 
						
							| 91 | 8 2 | mgpbas |  |-  B = ( Base ` ( mulGrp ` P ) ) | 
						
							| 92 | 5 91 | ressbas2 |  |-  ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` Y ) ) | 
						
							| 93 | 21 92 | ax-mp |  |-  ( B \ { .0. } ) = ( Base ` Y ) | 
						
							| 94 |  | nn0sscn |  |-  NN0 C_ CC | 
						
							| 95 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 96 | 6 95 | ressbas2 |  |-  ( NN0 C_ CC -> NN0 = ( Base ` N ) ) | 
						
							| 97 | 94 96 | ax-mp |  |-  NN0 = ( Base ` N ) | 
						
							| 98 | 2 | fvexi |  |-  B e. _V | 
						
							| 99 |  | difexg |  |-  ( B e. _V -> ( B \ { .0. } ) e. _V ) | 
						
							| 100 | 98 99 | ax-mp |  |-  ( B \ { .0. } ) e. _V | 
						
							| 101 | 8 40 | mgpplusg |  |-  ( .r ` P ) = ( +g ` ( mulGrp ` P ) ) | 
						
							| 102 | 5 101 | ressplusg |  |-  ( ( B \ { .0. } ) e. _V -> ( .r ` P ) = ( +g ` Y ) ) | 
						
							| 103 | 100 102 | ax-mp |  |-  ( .r ` P ) = ( +g ` Y ) | 
						
							| 104 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 105 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 106 | 6 105 | ressplusg |  |-  ( NN0 e. _V -> + = ( +g ` N ) ) | 
						
							| 107 | 104 106 | ax-mp |  |-  + = ( +g ` N ) | 
						
							| 108 |  | eqid |  |-  ( 0g ` Y ) = ( 0g ` Y ) | 
						
							| 109 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 110 | 6 109 | subm0 |  |-  ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` N ) ) | 
						
							| 111 | 14 110 | ax-mp |  |-  0 = ( 0g ` N ) | 
						
							| 112 | 93 97 103 107 108 111 | ismhm |  |-  ( ( D |` ( B \ { .0. } ) ) e. ( Y MndHom N ) <-> ( ( Y e. Mnd /\ N e. Mnd ) /\ ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) /\ ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) ) ) | 
						
							| 113 | 17 90 112 | sylanbrc |  |-  ( R e. Domn -> ( D |` ( B \ { .0. } ) ) e. ( Y MndHom N ) ) |