Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mhm.d |
|- D = ( deg1 ` R ) |
2 |
|
deg1mhm.b |
|- B = ( Base ` P ) |
3 |
|
deg1mhm.p |
|- P = ( Poly1 ` R ) |
4 |
|
deg1mhm.z |
|- .0. = ( 0g ` P ) |
5 |
|
deg1mhm.y |
|- Y = ( ( mulGrp ` P ) |`s ( B \ { .0. } ) ) |
6 |
|
deg1mhm.n |
|- N = ( CCfld |`s NN0 ) |
7 |
3
|
ply1domn |
|- ( R e. Domn -> P e. Domn ) |
8 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
9 |
2 4 8
|
isdomn3 |
|- ( P e. Domn <-> ( P e. Ring /\ ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) ) |
10 |
9
|
simprbi |
|- ( P e. Domn -> ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) |
11 |
7 10
|
syl |
|- ( R e. Domn -> ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) ) |
12 |
5
|
submmnd |
|- ( ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) -> Y e. Mnd ) |
13 |
11 12
|
syl |
|- ( R e. Domn -> Y e. Mnd ) |
14 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
15 |
6
|
submmnd |
|- ( NN0 e. ( SubMnd ` CCfld ) -> N e. Mnd ) |
16 |
14 15
|
mp1i |
|- ( R e. Domn -> N e. Mnd ) |
17 |
13 16
|
jca |
|- ( R e. Domn -> ( Y e. Mnd /\ N e. Mnd ) ) |
18 |
1 3 2
|
deg1xrf |
|- D : B --> RR* |
19 |
|
ffn |
|- ( D : B --> RR* -> D Fn B ) |
20 |
18 19
|
ax-mp |
|- D Fn B |
21 |
|
difss |
|- ( B \ { .0. } ) C_ B |
22 |
|
fnssres |
|- ( ( D Fn B /\ ( B \ { .0. } ) C_ B ) -> ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) ) |
23 |
20 21 22
|
mp2an |
|- ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) |
24 |
23
|
a1i |
|- ( R e. Domn -> ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) ) |
25 |
|
fvres |
|- ( x e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) = ( D ` x ) ) |
26 |
25
|
adantl |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) = ( D ` x ) ) |
27 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
28 |
27
|
adantr |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> R e. Ring ) |
29 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
30 |
29
|
adantl |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> x e. B ) |
31 |
|
eldifsni |
|- ( x e. ( B \ { .0. } ) -> x =/= .0. ) |
32 |
31
|
adantl |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> x =/= .0. ) |
33 |
1 3 4 2
|
deg1nn0cl |
|- ( ( R e. Ring /\ x e. B /\ x =/= .0. ) -> ( D ` x ) e. NN0 ) |
34 |
28 30 32 33
|
syl3anc |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( D ` x ) e. NN0 ) |
35 |
26 34
|
eqeltrd |
|- ( ( R e. Domn /\ x e. ( B \ { .0. } ) ) -> ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) |
36 |
35
|
ralrimiva |
|- ( R e. Domn -> A. x e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) |
37 |
|
ffnfv |
|- ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 <-> ( ( D |` ( B \ { .0. } ) ) Fn ( B \ { .0. } ) /\ A. x e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` x ) e. NN0 ) ) |
38 |
24 36 37
|
sylanbrc |
|- ( R e. Domn -> ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 ) |
39 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
40 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
41 |
27
|
adantr |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> R e. Ring ) |
42 |
29
|
ad2antrl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> x e. B ) |
43 |
31
|
ad2antrl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> x =/= .0. ) |
44 |
|
simpl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> R e. Domn ) |
45 |
|
eqid |
|- ( coe1 ` x ) = ( coe1 ` x ) |
46 |
1 3 4 2 39 45
|
deg1ldgdomn |
|- ( ( R e. Domn /\ x e. B /\ x =/= .0. ) -> ( ( coe1 ` x ) ` ( D ` x ) ) e. ( RLReg ` R ) ) |
47 |
44 42 43 46
|
syl3anc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( coe1 ` x ) ` ( D ` x ) ) e. ( RLReg ` R ) ) |
48 |
|
eldifi |
|- ( y e. ( B \ { .0. } ) -> y e. B ) |
49 |
48
|
ad2antll |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> y e. B ) |
50 |
|
eldifsni |
|- ( y e. ( B \ { .0. } ) -> y =/= .0. ) |
51 |
50
|
ad2antll |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> y =/= .0. ) |
52 |
1 3 39 2 40 4 41 42 43 47 49 51
|
deg1mul2 |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( D ` ( x ( .r ` P ) y ) ) = ( ( D ` x ) + ( D ` y ) ) ) |
53 |
|
domnring |
|- ( P e. Domn -> P e. Ring ) |
54 |
7 53
|
syl |
|- ( R e. Domn -> P e. Ring ) |
55 |
54
|
adantr |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> P e. Ring ) |
56 |
2 40
|
ringcl |
|- ( ( P e. Ring /\ x e. B /\ y e. B ) -> ( x ( .r ` P ) y ) e. B ) |
57 |
55 42 49 56
|
syl3anc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) e. B ) |
58 |
7
|
adantr |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> P e. Domn ) |
59 |
2 40 4
|
domnmuln0 |
|- ( ( P e. Domn /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x ( .r ` P ) y ) =/= .0. ) |
60 |
58 42 43 49 51 59
|
syl122anc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) =/= .0. ) |
61 |
|
eldifsn |
|- ( ( x ( .r ` P ) y ) e. ( B \ { .0. } ) <-> ( ( x ( .r ` P ) y ) e. B /\ ( x ( .r ` P ) y ) =/= .0. ) ) |
62 |
57 60 61
|
sylanbrc |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( x ( .r ` P ) y ) e. ( B \ { .0. } ) ) |
63 |
|
fvres |
|- ( ( x ( .r ` P ) y ) e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( D ` ( x ( .r ` P ) y ) ) ) |
64 |
62 63
|
syl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( D ` ( x ( .r ` P ) y ) ) ) |
65 |
|
fvres |
|- ( y e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` y ) = ( D ` y ) ) |
66 |
25 65
|
oveqan12d |
|- ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) = ( ( D ` x ) + ( D ` y ) ) ) |
67 |
66
|
adantl |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) = ( ( D ` x ) + ( D ` y ) ) ) |
68 |
52 64 67
|
3eqtr4d |
|- ( ( R e. Domn /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) ) -> ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) ) |
69 |
68
|
ralrimivva |
|- ( R e. Domn -> A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) ) |
70 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
71 |
2 70
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. B ) |
72 |
54 71
|
syl |
|- ( R e. Domn -> ( 1r ` P ) e. B ) |
73 |
|
domnnzr |
|- ( P e. Domn -> P e. NzRing ) |
74 |
70 4
|
nzrnz |
|- ( P e. NzRing -> ( 1r ` P ) =/= .0. ) |
75 |
7 73 74
|
3syl |
|- ( R e. Domn -> ( 1r ` P ) =/= .0. ) |
76 |
|
eldifsn |
|- ( ( 1r ` P ) e. ( B \ { .0. } ) <-> ( ( 1r ` P ) e. B /\ ( 1r ` P ) =/= .0. ) ) |
77 |
72 75 76
|
sylanbrc |
|- ( R e. Domn -> ( 1r ` P ) e. ( B \ { .0. } ) ) |
78 |
|
fvres |
|- ( ( 1r ` P ) e. ( B \ { .0. } ) -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( D ` ( 1r ` P ) ) ) |
79 |
77 78
|
syl |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( D ` ( 1r ` P ) ) ) |
80 |
8 70
|
ringidval |
|- ( 1r ` P ) = ( 0g ` ( mulGrp ` P ) ) |
81 |
5 80
|
subm0 |
|- ( ( B \ { .0. } ) e. ( SubMnd ` ( mulGrp ` P ) ) -> ( 1r ` P ) = ( 0g ` Y ) ) |
82 |
11 81
|
syl |
|- ( R e. Domn -> ( 1r ` P ) = ( 0g ` Y ) ) |
83 |
82
|
fveq2d |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 1r ` P ) ) = ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) ) |
84 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
85 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
86 |
3 70 85 1
|
mon1pid |
|- ( R e. NzRing -> ( ( 1r ` P ) e. ( Monic1p ` R ) /\ ( D ` ( 1r ` P ) ) = 0 ) ) |
87 |
86
|
simprd |
|- ( R e. NzRing -> ( D ` ( 1r ` P ) ) = 0 ) |
88 |
84 87
|
syl |
|- ( R e. Domn -> ( D ` ( 1r ` P ) ) = 0 ) |
89 |
79 83 88
|
3eqtr3d |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) |
90 |
38 69 89
|
3jca |
|- ( R e. Domn -> ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) /\ ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) ) |
91 |
8 2
|
mgpbas |
|- B = ( Base ` ( mulGrp ` P ) ) |
92 |
5 91
|
ressbas2 |
|- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` Y ) ) |
93 |
21 92
|
ax-mp |
|- ( B \ { .0. } ) = ( Base ` Y ) |
94 |
|
nn0sscn |
|- NN0 C_ CC |
95 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
96 |
6 95
|
ressbas2 |
|- ( NN0 C_ CC -> NN0 = ( Base ` N ) ) |
97 |
94 96
|
ax-mp |
|- NN0 = ( Base ` N ) |
98 |
2
|
fvexi |
|- B e. _V |
99 |
|
difexg |
|- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
100 |
98 99
|
ax-mp |
|- ( B \ { .0. } ) e. _V |
101 |
8 40
|
mgpplusg |
|- ( .r ` P ) = ( +g ` ( mulGrp ` P ) ) |
102 |
5 101
|
ressplusg |
|- ( ( B \ { .0. } ) e. _V -> ( .r ` P ) = ( +g ` Y ) ) |
103 |
100 102
|
ax-mp |
|- ( .r ` P ) = ( +g ` Y ) |
104 |
|
nn0ex |
|- NN0 e. _V |
105 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
106 |
6 105
|
ressplusg |
|- ( NN0 e. _V -> + = ( +g ` N ) ) |
107 |
104 106
|
ax-mp |
|- + = ( +g ` N ) |
108 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
109 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
110 |
6 109
|
subm0 |
|- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` N ) ) |
111 |
14 110
|
ax-mp |
|- 0 = ( 0g ` N ) |
112 |
93 97 103 107 108 111
|
ismhm |
|- ( ( D |` ( B \ { .0. } ) ) e. ( Y MndHom N ) <-> ( ( Y e. Mnd /\ N e. Mnd ) /\ ( ( D |` ( B \ { .0. } ) ) : ( B \ { .0. } ) --> NN0 /\ A. x e. ( B \ { .0. } ) A. y e. ( B \ { .0. } ) ( ( D |` ( B \ { .0. } ) ) ` ( x ( .r ` P ) y ) ) = ( ( ( D |` ( B \ { .0. } ) ) ` x ) + ( ( D |` ( B \ { .0. } ) ) ` y ) ) /\ ( ( D |` ( B \ { .0. } ) ) ` ( 0g ` Y ) ) = 0 ) ) ) |
113 |
17 90 112
|
sylanbrc |
|- ( R e. Domn -> ( D |` ( B \ { .0. } ) ) e. ( Y MndHom N ) ) |