| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitrrg.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
| 2 |
|
unitrrg.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 4 |
3 2
|
unitcl |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 6 |
|
oveq2 |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 7 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 10 |
2 7 8 9
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 13 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 14 |
2 7 3
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
5
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
3 8
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 19 |
13 15 16 17 18
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 20 |
3 8 9
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 21 |
20
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 22 |
12 19 21
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = 𝑦 ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 24 |
3 8 23
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 25 |
13 15 24
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 26 |
22 25
|
eqeq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ↔ 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
| 27 |
6 26
|
imbitrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
| 28 |
27
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
| 29 |
1 3 8 23
|
isrrg |
⊢ ( 𝑥 ∈ 𝐸 ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) |
| 30 |
5 28 29
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐸 ) |
| 31 |
30
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐸 ) ) |
| 32 |
31
|
ssrdv |
⊢ ( 𝑅 ∈ Ring → 𝑈 ⊆ 𝐸 ) |