| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mon1psubm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | mon1psubm.m |  |-  M = ( Monic1p ` R ) | 
						
							| 3 |  | mon1psubm.u |  |-  U = ( mulGrp ` P ) | 
						
							| 4 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 5 | 1 4 2 | mon1pcl |  |-  ( x e. M -> x e. ( Base ` P ) ) | 
						
							| 6 | 5 | ssriv |  |-  M C_ ( Base ` P ) | 
						
							| 7 | 6 | a1i |  |-  ( R e. NzRing -> M C_ ( Base ` P ) ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 9 |  | eqid |  |-  ( deg1 ` R ) = ( deg1 ` R ) | 
						
							| 10 | 1 8 2 9 | mon1pid |  |-  ( R e. NzRing -> ( ( 1r ` P ) e. M /\ ( ( deg1 ` R ) ` ( 1r ` P ) ) = 0 ) ) | 
						
							| 11 | 10 | simpld |  |-  ( R e. NzRing -> ( 1r ` P ) e. M ) | 
						
							| 12 | 1 | ply1nz |  |-  ( R e. NzRing -> P e. NzRing ) | 
						
							| 13 |  | nzrring |  |-  ( P e. NzRing -> P e. Ring ) | 
						
							| 14 | 12 13 | syl |  |-  ( R e. NzRing -> P e. Ring ) | 
						
							| 15 | 14 | adantr |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> P e. Ring ) | 
						
							| 16 | 5 | ad2antrl |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> x e. ( Base ` P ) ) | 
						
							| 17 |  | simprr |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> y e. M ) | 
						
							| 18 | 6 17 | sselid |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> y e. ( Base ` P ) ) | 
						
							| 19 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 20 | 4 19 | ringcl |  |-  ( ( P e. Ring /\ x e. ( Base ` P ) /\ y e. ( Base ` P ) ) -> ( x ( .r ` P ) y ) e. ( Base ` P ) ) | 
						
							| 21 | 15 16 18 20 | syl3anc |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( x ( .r ` P ) y ) e. ( Base ` P ) ) | 
						
							| 22 |  | eqid |  |-  ( RLReg ` R ) = ( RLReg ` R ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 24 |  | nzrring |  |-  ( R e. NzRing -> R e. Ring ) | 
						
							| 25 | 24 | adantr |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> R e. Ring ) | 
						
							| 26 | 1 23 2 | mon1pn0 |  |-  ( x e. M -> x =/= ( 0g ` P ) ) | 
						
							| 27 | 26 | ad2antrl |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> x =/= ( 0g ` P ) ) | 
						
							| 28 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 29 | 9 28 2 | mon1pldg |  |-  ( x e. M -> ( ( coe1 ` x ) ` ( ( deg1 ` R ) ` x ) ) = ( 1r ` R ) ) | 
						
							| 30 | 29 | ad2antrl |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( coe1 ` x ) ` ( ( deg1 ` R ) ` x ) ) = ( 1r ` R ) ) | 
						
							| 31 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 32 | 22 31 | unitrrg |  |-  ( R e. Ring -> ( Unit ` R ) C_ ( RLReg ` R ) ) | 
						
							| 33 | 24 32 | syl |  |-  ( R e. NzRing -> ( Unit ` R ) C_ ( RLReg ` R ) ) | 
						
							| 34 | 31 28 | 1unit |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) | 
						
							| 35 | 24 34 | syl |  |-  ( R e. NzRing -> ( 1r ` R ) e. ( Unit ` R ) ) | 
						
							| 36 | 33 35 | sseldd |  |-  ( R e. NzRing -> ( 1r ` R ) e. ( RLReg ` R ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( 1r ` R ) e. ( RLReg ` R ) ) | 
						
							| 38 | 30 37 | eqeltrd |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( coe1 ` x ) ` ( ( deg1 ` R ) ` x ) ) e. ( RLReg ` R ) ) | 
						
							| 39 | 1 23 2 | mon1pn0 |  |-  ( y e. M -> y =/= ( 0g ` P ) ) | 
						
							| 40 | 39 | ad2antll |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> y =/= ( 0g ` P ) ) | 
						
							| 41 | 9 1 22 4 19 23 25 16 27 38 18 40 | deg1mul2 |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( deg1 ` R ) ` ( x ( .r ` P ) y ) ) = ( ( ( deg1 ` R ) ` x ) + ( ( deg1 ` R ) ` y ) ) ) | 
						
							| 42 | 9 1 23 4 | deg1nn0cl |  |-  ( ( R e. Ring /\ x e. ( Base ` P ) /\ x =/= ( 0g ` P ) ) -> ( ( deg1 ` R ) ` x ) e. NN0 ) | 
						
							| 43 | 25 16 27 42 | syl3anc |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( deg1 ` R ) ` x ) e. NN0 ) | 
						
							| 44 | 9 1 23 4 | deg1nn0cl |  |-  ( ( R e. Ring /\ y e. ( Base ` P ) /\ y =/= ( 0g ` P ) ) -> ( ( deg1 ` R ) ` y ) e. NN0 ) | 
						
							| 45 | 25 18 40 44 | syl3anc |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( deg1 ` R ) ` y ) e. NN0 ) | 
						
							| 46 | 43 45 | nn0addcld |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( ( deg1 ` R ) ` x ) + ( ( deg1 ` R ) ` y ) ) e. NN0 ) | 
						
							| 47 | 41 46 | eqeltrd |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( deg1 ` R ) ` ( x ( .r ` P ) y ) ) e. NN0 ) | 
						
							| 48 | 9 1 23 4 | deg1nn0clb |  |-  ( ( R e. Ring /\ ( x ( .r ` P ) y ) e. ( Base ` P ) ) -> ( ( x ( .r ` P ) y ) =/= ( 0g ` P ) <-> ( ( deg1 ` R ) ` ( x ( .r ` P ) y ) ) e. NN0 ) ) | 
						
							| 49 | 25 21 48 | syl2anc |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( x ( .r ` P ) y ) =/= ( 0g ` P ) <-> ( ( deg1 ` R ) ` ( x ( .r ` P ) y ) ) e. NN0 ) ) | 
						
							| 50 | 47 49 | mpbird |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( x ( .r ` P ) y ) =/= ( 0g ` P ) ) | 
						
							| 51 | 41 | fveq2d |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( coe1 ` ( x ( .r ` P ) y ) ) ` ( ( deg1 ` R ) ` ( x ( .r ` P ) y ) ) ) = ( ( coe1 ` ( x ( .r ` P ) y ) ) ` ( ( ( deg1 ` R ) ` x ) + ( ( deg1 ` R ) ` y ) ) ) ) | 
						
							| 52 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 53 | 1 19 52 4 9 23 25 16 27 18 40 | coe1mul4 |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( coe1 ` ( x ( .r ` P ) y ) ) ` ( ( ( deg1 ` R ) ` x ) + ( ( deg1 ` R ) ` y ) ) ) = ( ( ( coe1 ` x ) ` ( ( deg1 ` R ) ` x ) ) ( .r ` R ) ( ( coe1 ` y ) ` ( ( deg1 ` R ) ` y ) ) ) ) | 
						
							| 54 | 9 28 2 | mon1pldg |  |-  ( y e. M -> ( ( coe1 ` y ) ` ( ( deg1 ` R ) ` y ) ) = ( 1r ` R ) ) | 
						
							| 55 | 54 | ad2antll |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( coe1 ` y ) ` ( ( deg1 ` R ) ` y ) ) = ( 1r ` R ) ) | 
						
							| 56 | 30 55 | oveq12d |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( ( coe1 ` x ) ` ( ( deg1 ` R ) ` x ) ) ( .r ` R ) ( ( coe1 ` y ) ` ( ( deg1 ` R ) ` y ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) ) | 
						
							| 57 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 58 | 57 28 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 59 | 57 52 28 | ringlidm |  |-  ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 60 | 24 58 59 | syl2anc2 |  |-  ( R e. NzRing -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 62 | 56 61 | eqtrd |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( ( coe1 ` x ) ` ( ( deg1 ` R ) ` x ) ) ( .r ` R ) ( ( coe1 ` y ) ` ( ( deg1 ` R ) ` y ) ) ) = ( 1r ` R ) ) | 
						
							| 63 | 53 62 | eqtrd |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( coe1 ` ( x ( .r ` P ) y ) ) ` ( ( ( deg1 ` R ) ` x ) + ( ( deg1 ` R ) ` y ) ) ) = ( 1r ` R ) ) | 
						
							| 64 | 51 63 | eqtrd |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( ( coe1 ` ( x ( .r ` P ) y ) ) ` ( ( deg1 ` R ) ` ( x ( .r ` P ) y ) ) ) = ( 1r ` R ) ) | 
						
							| 65 | 1 4 23 9 2 28 | ismon1p |  |-  ( ( x ( .r ` P ) y ) e. M <-> ( ( x ( .r ` P ) y ) e. ( Base ` P ) /\ ( x ( .r ` P ) y ) =/= ( 0g ` P ) /\ ( ( coe1 ` ( x ( .r ` P ) y ) ) ` ( ( deg1 ` R ) ` ( x ( .r ` P ) y ) ) ) = ( 1r ` R ) ) ) | 
						
							| 66 | 21 50 64 65 | syl3anbrc |  |-  ( ( R e. NzRing /\ ( x e. M /\ y e. M ) ) -> ( x ( .r ` P ) y ) e. M ) | 
						
							| 67 | 66 | ralrimivva |  |-  ( R e. NzRing -> A. x e. M A. y e. M ( x ( .r ` P ) y ) e. M ) | 
						
							| 68 | 3 | ringmgp |  |-  ( P e. Ring -> U e. Mnd ) | 
						
							| 69 | 14 68 | syl |  |-  ( R e. NzRing -> U e. Mnd ) | 
						
							| 70 | 3 4 | mgpbas |  |-  ( Base ` P ) = ( Base ` U ) | 
						
							| 71 | 3 8 | ringidval |  |-  ( 1r ` P ) = ( 0g ` U ) | 
						
							| 72 | 3 19 | mgpplusg |  |-  ( .r ` P ) = ( +g ` U ) | 
						
							| 73 | 70 71 72 | issubm |  |-  ( U e. Mnd -> ( M e. ( SubMnd ` U ) <-> ( M C_ ( Base ` P ) /\ ( 1r ` P ) e. M /\ A. x e. M A. y e. M ( x ( .r ` P ) y ) e. M ) ) ) | 
						
							| 74 | 69 73 | syl |  |-  ( R e. NzRing -> ( M e. ( SubMnd ` U ) <-> ( M C_ ( Base ` P ) /\ ( 1r ` P ) e. M /\ A. x e. M A. y e. M ( x ( .r ` P ) y ) e. M ) ) ) | 
						
							| 75 | 7 11 67 74 | mpbir3and |  |-  ( R e. NzRing -> M e. ( SubMnd ` U ) ) |