Description: Unitic polynomials have one leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mon1pldg.d | |- D = ( deg1 ` R ) |
|
| mon1pldg.o | |- .1. = ( 1r ` R ) |
||
| mon1pldg.m | |- M = ( Monic1p ` R ) |
||
| Assertion | mon1pldg | |- ( F e. M -> ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mon1pldg.d | |- D = ( deg1 ` R ) |
|
| 2 | mon1pldg.o | |- .1. = ( 1r ` R ) |
|
| 3 | mon1pldg.m | |- M = ( Monic1p ` R ) |
|
| 4 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 5 | eqid | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
|
| 6 | eqid | |- ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` R ) ) |
|
| 7 | 4 5 6 1 3 2 | ismon1p | |- ( F e. M <-> ( F e. ( Base ` ( Poly1 ` R ) ) /\ F =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) ) |
| 8 | 7 | simp3bi | |- ( F e. M -> ( ( coe1 ` F ) ` ( D ` F ) ) = .1. ) |