Metamath Proof Explorer


Theorem mon1pldg

Description: Unitic polynomials have one leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses mon1pldg.d D=deg1R
mon1pldg.o 1˙=1R
mon1pldg.m M=Monic1pR
Assertion mon1pldg FMcoe1FDF=1˙

Proof

Step Hyp Ref Expression
1 mon1pldg.d D=deg1R
2 mon1pldg.o 1˙=1R
3 mon1pldg.m M=Monic1pR
4 eqid Poly1R=Poly1R
5 eqid BasePoly1R=BasePoly1R
6 eqid 0Poly1R=0Poly1R
7 4 5 6 1 3 2 ismon1p FMFBasePoly1RF0Poly1Rcoe1FDF=1˙
8 7 simp3bi FMcoe1FDF=1˙