Metamath Proof Explorer


Definition df-mon1

Description: Define the set of monic univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-mon1 Monic1p=rVfBasePoly1r|f0Poly1rcoe1fdeg1rf=1r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmn1 classMonic1p
1 vr setvarr
2 cvv classV
3 vf setvarf
4 cbs classBase
5 cpl1 classPoly1
6 1 cv setvarr
7 6 5 cfv classPoly1r
8 7 4 cfv classBasePoly1r
9 3 cv setvarf
10 c0g class0𝑔
11 7 10 cfv class0Poly1r
12 9 11 wne wfff0Poly1r
13 cco1 classcoe1
14 9 13 cfv classcoe1f
15 cdg1 classdeg1
16 6 15 cfv classdeg1r
17 9 16 cfv classdeg1rf
18 17 14 cfv classcoe1fdeg1rf
19 cur class1r
20 6 19 cfv class1r
21 18 20 wceq wffcoe1fdeg1rf=1r
22 12 21 wa wfff0Poly1rcoe1fdeg1rf=1r
23 22 3 8 crab classfBasePoly1r|f0Poly1rcoe1fdeg1rf=1r
24 1 2 23 cmpt classrVfBasePoly1r|f0Poly1rcoe1fdeg1rf=1r
25 0 24 wceq wffMonic1p=rVfBasePoly1r|f0Poly1rcoe1fdeg1rf=1r