| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmn1 |
|- Monic1p |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
|
cbs |
|- Base |
| 5 |
|
cpl1 |
|- Poly1 |
| 6 |
1
|
cv |
|- r |
| 7 |
6 5
|
cfv |
|- ( Poly1 ` r ) |
| 8 |
7 4
|
cfv |
|- ( Base ` ( Poly1 ` r ) ) |
| 9 |
3
|
cv |
|- f |
| 10 |
|
c0g |
|- 0g |
| 11 |
7 10
|
cfv |
|- ( 0g ` ( Poly1 ` r ) ) |
| 12 |
9 11
|
wne |
|- f =/= ( 0g ` ( Poly1 ` r ) ) |
| 13 |
|
cco1 |
|- coe1 |
| 14 |
9 13
|
cfv |
|- ( coe1 ` f ) |
| 15 |
|
cdg1 |
|- deg1 |
| 16 |
6 15
|
cfv |
|- ( deg1 ` r ) |
| 17 |
9 16
|
cfv |
|- ( ( deg1 ` r ) ` f ) |
| 18 |
17 14
|
cfv |
|- ( ( coe1 ` f ) ` ( ( deg1 ` r ) ` f ) ) |
| 19 |
|
cur |
|- 1r |
| 20 |
6 19
|
cfv |
|- ( 1r ` r ) |
| 21 |
18 20
|
wceq |
|- ( ( coe1 ` f ) ` ( ( deg1 ` r ) ` f ) ) = ( 1r ` r ) |
| 22 |
12 21
|
wa |
|- ( f =/= ( 0g ` ( Poly1 ` r ) ) /\ ( ( coe1 ` f ) ` ( ( deg1 ` r ) ` f ) ) = ( 1r ` r ) ) |
| 23 |
22 3 8
|
crab |
|- { f e. ( Base ` ( Poly1 ` r ) ) | ( f =/= ( 0g ` ( Poly1 ` r ) ) /\ ( ( coe1 ` f ) ` ( ( deg1 ` r ) ` f ) ) = ( 1r ` r ) ) } |
| 24 |
1 2 23
|
cmpt |
|- ( r e. _V |-> { f e. ( Base ` ( Poly1 ` r ) ) | ( f =/= ( 0g ` ( Poly1 ` r ) ) /\ ( ( coe1 ` f ) ` ( ( deg1 ` r ) ` f ) ) = ( 1r ` r ) ) } ) |
| 25 |
0 24
|
wceq |
|- Monic1p = ( r e. _V |-> { f e. ( Base ` ( Poly1 ` r ) ) | ( f =/= ( 0g ` ( Poly1 ` r ) ) /\ ( ( coe1 ` f ) ` ( ( deg1 ` r ) ` f ) ) = ( 1r ` r ) ) } ) |